Теория автоматического управления

       

Структурные схемы и их преобразование


В теории автоматического управления под структурной схемой понимается графическое изображение математического описания. То есть для составления структурной схемы система дробится на элементы, каждый из которых описывается простейшим математическим выражением ( в виде передаточной функции). Структурные схемы содержат следующие четыре типа элементов: звенья направленного действия; устройства сравнения, или сумматоры; линии связи; точки разветвления (узлы).

Звенья направленного действия изображаются прямоугольниками, внутри которых записываются их передаточные функции.

Между собой звенья соединяются с помощью линий связи. На этих линиях стрелками указывается направление распространения сигналов. Следует подчеркнуть, что в направлениях, противоположных указанным стрелками, сигналы не распространяются. Сами линии связи, также как и сумматоры, считаются идеальными, то есть никакими параметрами не обладают.

Сумматоры предназначены для суммирования сигналов (с учетом знака сигнала), как и на функциональных схемах.

Для распределения сигналов по различным направлениям используются узлы, которые обозначаются точками в местах пересечения линий связи.

Для удобства расчетов бывает необходимо преобразовать исходную структурную схему системы к какому-либо желаемому виду, чаще всего - к цепи последовательно соединенных звеньев. В связи с этим рассмотрим основные правила преобразования структурных схем.

При последовательном соединении n звеньев с передаточными функциями Wi(p) эквивалентная передаточная функция Wэ(p) определяется их произведением:

При параллельном соединении n звеньев эквивалентная передаточная функция определяется суммой передаточных функций Wi(p) отдельных звеньев:

Для случая обратной связи при выводе эквивалентной передаточной функции замкнутого участка Wз(p) используем обозначения, приведенные на рис.2.8.

Схема замкнутого участка системы



Рис.2.8

Обратная связь называется отрицательной, если

x1=xвх-xoc,

как показано на схеме, и положительно, если

x1=xвх+xoc.


В случае отрицательной обратной связи в изображениях по Лапласу с учетом указанных направлений распространения сигналов запишем:

Xвых(p)=X1(p)W1(p)=[Xвх(p)-Xoc(p)]W(p)=

[Xвх(p)-Xвых(p)Woc(p)]W(p).

Отсюда получаем передаточную функцию



Для положительной обратной связи в знаменателе формулы знак "плюс" меняется на "минус".

Указанные три вида преобразования структурных схем являются наиболее часто встречающимися. Для остальных случаев сформулируем основной принцип преобразования и поясним несколькими примерами. При преобразовании структурной схемы передача сигнала по выбранному направлению не должна меняться.

Например, в структурной схеме на рис.2.9, а необходимо перенести узел через звено с передаточной функцией W2(p).

Преобразование структурной схемы



Рис.2.9

Чтобы передача сигнала по цепи обратной связи не изменилась, необходимо ввести фиктивное звено с передаточной функцией 1/W2(p), как показано на рис.2.9, б.

В более сложных случаях в процессе преобразования необходимо производить определенные расчеты.

Например, в схеме на рис.2.10, а узел 1 необходимо перенести на выход звена с передаточной функцией W2(p).

Преобразование структурной схемы



а)



б)

Рис.2.10

Установим связь между величинами Xвых(p) и X2(p).

На входе звеньев с передаточными функциями W1(p) и W2(p) действует сигнал



На выходе звена с передаточной функцией W1(p)



На выходе сумматора в узле 1



Отсюда видно, что в рассматриваемом примере при переносе узла необходимо ввести фиктивное звено с передаточной функцией
, как показано на рис. 2.10, б.

При переносе узла в схеме на рис.2.11, а с выхода сумматора на его положительный вход найдем передаточную функцию фиктивного звена без дополнительных пояснений.



Рис.2.11



К содержанию


Содержание раздела