Теория автоматического управления

       

Последовательная коррекция динамических свойств


Коррекция динамических свойств осуществляется с целью выполнения требований по устойчивости и качеству переходного процесса.

Осуществляется коррекция с помощью введения в САУ специальных корректирующих звеньев. Эти звенья могут включаться либо последовательно с основными звеньями САУ, либо параллельно им. Соответственно они и называются: последовательные либо параллельные корректирующие звенья.

Последовательные корректирующие звенья можно разделить на три типа: пропорционально-дифференцирующие (ПД), пропорционально-интегрирующие (ПИ) и пропорционально-интегро-дифференцирующие (ПИД) звенья.

ПД-звено имеет передаточную функцию

WПД(p)

то есть выходная величина этого звена пропорциональна входной величине и ее первой производной.

Включение этого звена в САУ приводит к тому, что передаточная функция разомкнутого контура САУ

умножается на WПД(p), то есть принимает вид

В результате характеристический полином замкнутой САУ D(р) будет следующий:

где A(p)=anpn+an-1pn-1+...+a1p+a0.



Положим, что В(р)=k (так как мы исследуем влияние ПД-звена, то логично предположить, что в исходной САУ такого звена не было, но тогда числитель передаточной функции исходной САУ содержит лишь величину k). Тогда можно видеть, что в характеристическом полиноме замкнутой САУ изменится коэффициент при р в первой степени. Включение двух ПД-звеньев приведет к изменению коэффициента и при p2 и т.д. Изменение же этих коэффициентов изменяет условия устойчивости и качество переходного процесса.

Рассмотрим в качестве примера применение данного звена для стабилизации, то есть обеспечения устойчивости САУ с астатизмом выше первого порядка (порядок астатизма - это число интегрирующих звеньев в приведенной одноконтурной САУ).

Передаточную функцию разомкнутой САУ с порядком астатизма, равным r, можно представить в виде:

Соответственно характеристический полином замкнутой САУ будет:

D(р)=В(р)+prA(p).

Если В(р)=k, то из последнего выражения следует вывод о том, что САУ с порядком астатизма r>1 являются структурно неустойчивыми, поскольку в D(р) отсутствуют члены с р в степени от единицы до (r-1) (по критерию устойчивости Гурвица).


Введем теперь в систему (r-1) ПД-звеньев. При этом в харктеристическом полиноме появятся недостающие звенья:

D(p)=k(kп+kД1p+...+kД(r-1)pr-1)+prA(p).

Следовательно, САУ становится структурно устойчивой.

Влияние ПД-звена на качество переходного процесса продемонстрируем на примере последовательного соединения этого звена с апериодическим звеном с передаточной функцией



Передаточная функция последовательного соединения этих звеньев:



Соответственно переходная функция



где h0(t)- переходная функция апериодического звена.

Из последнего выражения видно, что отрицательное дополнительное воздействие по производной снижает быстродействие, а положительное, наоборот, повышает его. Например, при kд/kп=T0 полностью компенсируется инерционность апериодического звена:



Реальные ПД-звенья обладают инерционностью, то есть имеют следующую передаточную функцию:



где


Все сказанное выше об идеальном ПД-звене справедливо и для реального с той только разницей, что реальное слабее влияет на быстродействие и на области устойчивости.

ЛАЧХ реального ПД-звена приведена на рис.4.10.



Рис.4.10

ПД-звено является фильтром верхних частот, так как его ЛАЧХ растет с увеличением частоты. Поэтому введение этого звена в САУ расширяет ее полосу пропускания, повышает быстродействие.

Практически наиболее просто ПД-звенья реализуются в электрических системах постоянного тока, где они представляют собой пассивные RC- и RL- цепочки. Один из возможных вариантов представлен на рис.2.4.

Пример реализации ПД-звена на операционном усилителе приведен на рис.4.11.



Рис.4.11



Пропорционально-интегрирующее (ПИ) звено имеет передаточную функцию



В случае ТПИ=0 получаем идеальное ПИ-звено.

Последнее выражение можно представить так:



Таким образом, ПИ-звено эквивалентно последовательному соединению интегрирующего звена и ПД-звена. По своим частотным свойствам ПИ-звено противоположно ПД-звену, являясь фильтром нижних частот. ЛАЧХ ПИ-звена приведена на рис.4.12.



Рис. 4.12

Передаточная функция пропорционально-интегро-дифференциру-ющего (ПИД) звена





Это звено эквивалентно последовательному соединению интегрирующего звена и пропорционально-дифференцирующего с воздействием по двум производным или, что то же самое, последовательному соединению ПИ-звена и ПД-звена с одной производной. Таким образом, ПИД-звено повышает порядок астатизма, как и ПИ-звено, но при этом одновременно дает более сильную коррекцию динамических свойств САУ.

Такое звено подчеркивает как нижние, так и средние частоты, подавляя средние, как видно из приближенной ЛАЧХ ПИД-звена, приведенной на рис.4.12.



Рис.4.12

В связи с видом ЛАЧХ ПИД-звеньями называют не только звенья с указанной выше передаточной функцией Wпид(p), но и любые другие звенья, ЛАЧХ которых имеет минимум на средних частотах и растет в сторону как низких, так и высоких частот.

Вообще указанные выше наименования типов последовательных корректирующих звеньев в значительной степени условны прежде всего из-за инерционности реальных корректирующих звеньев.

Наиболее просто синтез последовательного корректирующего устройства можно произвести по ЛАЧХ. Для этого необходимо использовать ЛАЧХ нескорректированной САУ Gнескорр(
) и желаемую ЛАЧХ, Gскорр(
) соответствующую заданному переходному процессу. ЛАЧХ Gскорр(
) получают с помощью частотного критерия качества, иллюстрированного приведенными выше графиками (см. рис.4.7, рис.4.8).

При последовательном соединении звеньев справедливо соотношение

Wскорр(р)= Wнескорр(р)Wку(р),

где Wку(р) - передаточная функция синтезируемого последовательного корректирующего устройства.

Следовательно

Wку(р)=Wскорр(р)/Wнескорр(р).

Перейдем к частотной форме записи, используя логарифмические единицы:

20lg |Wку(р)(
)|=20lg |Wcкорр.(
)|- 20lg |Wнескорр.(
)|;

Gку(
)=Gскорр.(
) - Gнескорр.(
).

Тип и параметры последовательного корректирующего устройства получают следующим образом:

1) графически вычитают из желаемой ЛАЧХ ординаты ЛАЧХ исходной системы;

2) упрощают ЛАЧХ корректирующего устройства, сравнивают с ЛАЧХ имеющихся в справочных данных типовых корректирующих звеньев и выбирают конкретную схему корректирующего звена;

3) находят по сопрягающим частотам параметры схемы корректирующего устройства.

К содержанию


Содержание раздела