ТИПОВЫЕ ФУНКЦИОНАЛЬНЫЕ УЗЛЫ ЭЛЕКТРОННЫХ СИСТЕМ
Любая электронная система управления тем или иным агрегатом автомобиля, как правило, состоит из нескольких законченных функциональных узлов, предназначенных для решения соответствующей схемотехнической задачи. К числу таких типовых функциональных узлов относятся: стабилизаторы напряжения; частотно-аналоговые преобразователи, осуществляющие преобразование частоты входного сигнала в напряжение постоянного тока; регуляторы силы тока, обеспечивающие поддержание в цепи заданной силы тока или ее изменение по заданному закону в зависимости от уровня или частоты входного сигнала; элементы защиты как самой электронной системы, так и управляемого ею агрегата от аварийных режимов, к которым относятся, в частности, устройства защиты электронных блоков автоматики от коротких замыканий, перегрузки по току, а также от перенапряжений. Для защиты управляемого агрегата от аварийных режимов в случае отказа тех или иных устройств автоматики или ошибочных действий водителя применяют электронные устройства, предотвращающие возможность самопроизвольного непредусмотренного включения агрегата (например, включения в коробке передач низших передач при высокой скорости движения автомобиля).
СТАБИЛИЗАТОРЫ НАПРЯЖЕНИЯ
При значительных колебаниях напряжения бортовой сети, являющейся источником питания электронной аппаратуры, невозможно обеспечить стабильность характеристик систем регулирования без применения стабилизаторов напряжения.
Простейшим устройством, обеспечивающим стабилизацию напряжения, является параметрический стабилизатор напряжения, представляющий собой последовательно соединенные резистор и стабилитрон. Для повышения нагрузочной способности таких стабилизаторов их иногда дополняют эмиттерными повторителями.
Рис. б. Схема стабилизатора, поддерживающего заданный уровень напряжения по отношению к отрицательному полюсу источника питания
Преимуществами параметрических стабилизаторов является их малая цена и высокая надежность. Однако они не обеспечивают высокой стабильности выходного напряжения при значительных колебаниях напряжения бортовой сети и тока нагрузки. Кроме того, вследствие значительного разброса (как правило, в пределах ±10%) опорного напряжения у стабилитронов одного и того же типа невозможно без специального отбора стабилитронов обеспечить в стабилизаторе заданный уровень выходного стабилизированного напряжения.
Поэтому параметрические стабилизаторы напряжения не получили широкого распространения в электронных системах управления агрегатами автомобилей, поскольку к источникам питания их управляющих устройств предъявляют очень жесткие требования как в части стабильности напряжения питания, так и обеспечения заданной его величины. Последнее имеет особое значение для электронных устройств, содержащих интегральные микросхемы, у которых допустимый разброс напряжения питания может составлять ±5 %.
Эти требования удовлетворяются при использовании для питания электронных устройств компенсационных стабилизаторов напряжения с непрерывным регулированием. Такие стабилизаторы представляют собой замкнутую систему автоматического регулирования, обеспечивающую поддержание заданного выходного напряжения при любых изменениях внешних факторов (напряжения бортовой сети, тока нагрузки, температуры). Регулирующим элементом стабилизатора является выходной транзистор, работающий в активном режиме. Между эмиттером и коллектором транзистора создается падение напряжения, равное разности напряжения бортовой сети и требуемого напряжения стабилизации.
Компенсационные стабилизаторы напряжения широко описаны в литературе [7, 12, 34, 35], поэтому в данном разделе рассмотрены только некоторые схемы стабилизаторов такого типа, применяющиеся в электронных системах управления агрегатами автомобилей (сцепление, гидромеханические передачи). На рис. 5 приведена принципиальная электрическая схема компенсационного стабилизатора, обеспечивающего получение на выходе (вывод + UCT) стабилизированного напряжения по отношению к отрицательному полюсу (массе) бортовой сети (вывод — Ucr). Стабилизатор предназначен для подключения к бортовой сети с номинальным напряжением 24 В. К базе управляющего транзистора VT1 подводится напряжение, равное сумме опорных напряжений Uoni и UОП2 стабилитронов- VD1 и VD2, а напряжение, подводимое к его эмиттеру, определяется выражением
Uэ1 = (Uст - ДUVD4) R4/(R4
+ R5),
где ДUVD4 — падение напряжения в диоде VD4.
Напряжение между базой и эмиттером транзистора VT1
Для пояснения принципа действия стабилизатора предположим, что в его схеме отсутствует подстроечный резистор R5*, и подставим в формулу (1) значение R5= 0. В этом случае данная формула запишется в виде UБЭ1 = (Uoп1 + Uoп2) +ДUVD4 — UСт-
Если бы напряжение U вэ1 уменьшилось до 0,3 — 0,4 В, то вследствие закрытия транзисторов VT1 и VT2 выходное напряжение стабилизатора снизилось бы до нуля. Наоборот, в случае повышения напряжения Uвэ1
до 0,55 — 0,65 В произошел бы переход транзисторов VT1 и VT2 в режим насыщения с возрастанием выходного напряжения стабилизатора до значения, близкого к напряжению бортовой сети. Ни тот ни другой режим работы транзисторов не имеет места, поскольку напряжение U вэ! больше нуля и меньше напряжения бортовой сети. Поэтому в действительности напряжение Uвэ1 в зависимости от условий работы стабилизатора составляет 0,4 — 0,5 В.
Указанные значения U вэ1 соответствуют температуре транзисторов (20±5)°С. При увеличении температуры транзистора напряжение Uвэ1 уменьшается, а при уменьшении температуры возрастает.
Рис. 6. Схема стабилизатора, поддерживающего заданный уровень напряжения по отношению к положительному полюсу источника питания
С учетом приведенных данных выходное напряжение стабилизатора может быть определено по формуле Uст = Uоп1 + Uoia — ДUvD4 — (0,4-0,5). Падение напряжения AUVDi составляет 0,6 — 0,7 В, поэтому в первом приближении можно принять, что выходное напряжение стабилизатора определяется только суммой опорных напряжений стабилитронов VD1 и VD2. У различных стабилитронов одного и того же типа опорное напряжение имеет разброс до ±10 %. Вследствие этого в зависимости от того, какие конкретные стабилитроны будут использованы в стабилизаторе, их выходное напряжение может иметь разброс до ±10%. Если такая разница в значениях стабилизированного напряжения недопустима, то в схеме стабилизатора необходимо иметь подстроечный резистор R5*. Чем выше номинальное сопротивление этого резистора, тем больше при прочих равных условиях выходное напряжение стабилизатора. Тот же результат можно получить, анализируя формулу (1).
В стабилизаторе напряжения, выполненном в соответствии со схемой, приведенной на рис. 5, при R5 = 0 выходное стабилизированное напряжение равно 14,5 В. Для улучшения теплового режима транзистора VT2 в результате уменьшения падения напряжения в его переходе эмиттер — коллектор в цепь питания транзистора включен балластный резистор R2, имеющий сопротивление 10 Ом. Максимальный ток нагрузки стабилизатора составляет 0,5 А, поэтому падение напряжения в резисторе R2 не превышает 5 В. Если напряжение бортовой сети даже будет равно минимально допустимому его значению (21,6 В), то и в этом случае при указанном значении падения напряжения к эмиттеру транзистора VT2 будет подведено напряжение 16,6 В, что вполне достаточно для получения стабилизированного напряжения, равного 14,5 В.
Конденсаторы С1 и С2 применены для уменьшения до приемлемого уровня пульсаций напряжения на выходе стабилизатора. При этом электролитический конденсатор С1 относительно большой емкости выполняет функции фильтра низких частот, а неполярный конденсатор С2 используется для сглаживания высокочастотных импульсов. Защита стабилизатора от выхода из строя при коротком замыкании в выходной цепи осуществляется с помощью диода VD3. Если такое замыкание происходит, то вследствие уменьшения до нуля напряжения на выходе стабилизатора открывается диод .VD3 и напряжение, подводимое к базе транзистора VT1, уменьшается до 0,6 — 0,65 В. В результате резко уменьшается ток базы транзистора VT1, вследствие чего происходит ограничение тока в цепях базы, эмиттера и коллектора транзистора VT2 и тем самым осуществляется защита данного транзистора от выхода из строя.
В стабилизаторе напряжения (рис. 6), обеспечивающем при изменении напряжения бортовой сети в диапазоне 10,8 — 15 В поддержание заданного стабилизированного напряжения (10 — 10,2В) между выходом стабилизатора и положительным полюсом ( + U„) бортовой сети, в качестве источника опорного напряжения стабилизатора используется прецизионный стабилитрон VD1 (типа Д818Б).
По отношению к шине — Uст напряжение, подводимое к базе транзистора VT1, определяется выражением
UБ1 = Uст — Uоп (2)
где Uст
— напряжение между положительным полюсом бортовой сети (вывод + UCT) и выходом стабилизатора (вывод — UCT).
Напряжение, подводимое к эмиттеру транзистора VT1, определяется по формуле
Uэ1 = (UстR5 + ДUVD2R3)/(Rз + R5). (3)
где ДUVD2 — падение напряжения в диоде VD2.
С учетом формул (2) и (3) напряжение между эмиттером и базой транзистора VT1 может быть записано в виде
UЭБ1 = Uоп - (Uст - ДUVD2) R3/(R3 + R5). (4)
Если напряжение UЭБ1 станет меньше 0,3 — 0,4 В, то транзистор VT1 будет закрыт. Вследствие этого окажется выключенным транзистор VT2, и выходное напряжение стабилизатора уменьшится до нуля. При увеличении напряжения Uэв1 до 0,5 — 0,65 В транзистор VT1 переходит в режим насыщения, вследствие чего в таком же режиме будет работать и транзистор VT2. В результате напряжение на, выходе стабилизатора окажется близким к напряжению бортовой сети. Очевидно, что как тот, так и другой режимы транзисторов не реализуются в стабилизаторе, поскольку его выходное напряжение не должно быть равно ни нулю, ни напряжению бортовой сети. Вследствие этого напряжение Uэв! будет составлять 0,4 — 0,5 В (в зависимости от напряжения бортовой сети).
С учетом изложенного выше и выражения (4) формула для определения выходного (стабилизированного) напряжения стабилизатора может быть записана в виде
(5)
Из формулы (5) следует, что при постоянстве падения напряжения ДUVD2
в диоде VD2 величина стабилизированного напряжения UCT зависит только от опорного напряжения U0n стабилитрона VD1 и сопротивления резисторов КЗ, R5. Опорное напряжение стабилитронов типа Д818Б может иметь разброс в пределах 7,2 — 9 В. Для того чтобы при таком разбросе напряжения Uon обеспечить с высокой точностью заданный уровень UCT, резистор R5 используют в качестве подстроечного элемента схемы.
Анализ формулы (5) показывает, что для обеспечения постоян ства выходного напряжения стабилизатора независимо от температуры окружающей среды необходимо, чтобы при ее увеличении одновременно с уменьшением величины UЭBI снижалось и напряжение Uou. В случае же снижения температуры значение U0п должно увеличиваться. В рассматриваемом стабилизаторе это требование удовлетворяется, во-первых, вследствие применения стабилитрона VD1 типа Д818Б, имеющего отрицательный температурный коэффициент напряжения и, во-вторых, в результате включения последовательно с резистором R5 диода VD2. При увеличении температуры падение напряжения ДUVD2 в диоде VD2 уменьшается, в результате чего снижается напряжение, подводимое к эмиттеру транзистора VT1, что и требуется для получения меньшего напряжения UЭБ1.
Испытания стабилизатора, выполненного по схеме, приведенной на рис. 6, показали, что при изменении температуры окружающей среды от — 20 до + 70 °С значение Ucr меняется не более чем на +0,1 В.
Хорошая стабильность выходного напряжения стабилизатора при значительных изменениях напряжения источника его питания (бортовой сети) обеспечивается при подключении источника опорного напряжения, состоящего из стабилитрона VD1 и резистора R2, к выходному (стабилизированному) напряжению. Благодаря этому сила тока, проходящего через стабилитрон VD1, меняется в небольших пределах, что требуется для получения стабильного опорного напряжения стабилизатора. Указанное подключение стабилитрона VD1 оказалось возможным в результате применения резистора R1, с помощью которого осуществляется первичный пуск схемы после ее подключения к источнику питания.
Рис. 7. Схемы стабилизатора напряжения, выполненного на базе элемента DA1 высокопороговой логики, и элемента DA1:
а — схема стабилизатора; б — схема элемента DA1
Важным преимуществом рассматриваемого стабилизатора является возможность получения заданного стабилизированного напряжения UCT при напряжении бортовой сети, превышающем значение U ст всего лишь на 0,3 — 0,5 В. Это имеет особое значение, когда стабилизированное напряжение должно быть на уровне 10 В, а источником питания стабилизатора является бортовая сеть с номинальным напряжением 12 В и, следовательно, с минимально возможным напряжением 10,8 В.
Очень простым по схемотехническому решению является стабилизатор напряжения, принципиальная схема которого приведена на рис. 7. В этом стабилизаторе поддержание заданного уровня напряжения обеспечивается с помощью логического элемента типа И — НЕ, выполненного по схеме высокопороговой логики. Такие элементы являются составной частью всех логических микросхем серии К511 (ЛА1, ЛА2, ЛАЗ, ЛА4, ЛА5 и др.).
Для пояснения принципа действия стабилизатора рассмотрим передаточные характеристики элемента И — НЕ микросхем серии К511 (рис. 8) при напряжениях источника питания Un, равных 15 В (кривая J) и 10,8 В (кривая 2). Если входное напряжение UBX элемента меньше 6 В, то напряжение UВых на выходе элемента имеет высокий уровень, близкий к напряжению источника питания (13,5 В при Uп=15 В и 9,5 В при Uп=10,8 В). При входном напряжении, превышающем 8 В, выходное напряжение элемента снижается до 1,5 В. В диапазоне входных напряжений 6 — 8 В происходит монотонное уменьшение выходного напряжения. Именно на данном участке передаточной характеристики, где величина выходного напряжения зависит от входного напряжения, в рассматриваемом стабилизаторе работает элемент 2И — НЕ. При этом связь между выходным Uвыт
и входным UBX напряжениями элемента (кривые 3
— 6) выражается соотношением
Uвых = Uвх (R2 + R3)/R3 + ДUБЭ1, (6)
где ДUБЭ1 — падение напряжения в переходе база — эмиттер транзистора VTL
Рис. 8. Зависимости, характеризующие работу стабилизатора на базе элемента высокопороговой логики:
1 и 2 — передаточные характеристики; 3 — 6 — Uяыx=f(Uвх) при различных сопротивлениях резисторов R2 и R3
Однако связь между значениями (UВЫX
и U3I задается передаточной характеристикой элемента. Поэтому напряжение UВЫх на выходе элемента определяется точкой пересечения его передаточной характеристики и кривой, описываемой формулой (6).
Связь между выходом 3 (см. рис. 7, а) элемента и выходом стабилизатора осуществляется через транзистор VT1, включенный по схеме эмиттерного повторителя. Поэтому напряжение на выходе стабилизатора
Uст = Uвых — ДUБЭ1 = Uвх (R2 + R3)/R3.
Напряжение в стабилизаторе поддерживается постоянным бла годаря действию отрицательной обратной связи, реализуемой путем соединения выхода стабилизатора и входов элемента (через делитель напряжения, образованный резисторами R2 — R3). Если, например, напряжение на выходе стабилизатора по какой-либо причине стало больше значения Uст, то происходит увеличение входного напряжения элемента. В соответствии с передаточной характеристикой элемента это вызовет уменьшение его выходного напряжения с восстановлением прежнего уровня напряжения Uст на выходе стабилизатора. В случае снижения напряжения на выходе стабилизатора меньше значения UCT входное напряжение элемента уменьшится. В результате возрастет напряжение на выходе элемента, что обеспечит восстановление прежнего уровня напряжения.
В зависимости от соотношения сопротивления резисторов R2 и R3 напряжение на выходе элемента может устанавливаться в пределах от 1,5 до 13,5 В при UП=15 В или до 9,3 В при UП=10,8 В. Однако оптимальная зона работы стабилизатора соответствует участку передаточной характеристики, где зависимость UВЫх = =f(UBx) имеет максимальную крутизну. При номинальном напряжении бортовой сети- 12 В, минимальное напряжение источника питания стабилизатора может быть равно 10,8 В. С учетом этого максимальный диапазон устанавливаемого выходного напряжения элемента составляет 1,5 — 9,3 В (точки пересечения кривых 3 и 6 с кривыми 1 и 2), а оптимальный диапазон — от 3 до 8 В (точки пересечения кривых 4 к 5 с кривыми 1 и 2).
В имеющихся стабилизаторах напряжения, выполненных по схеме, приведенной на,рис. 7, минимальная разница между напряжением источника питания и стабилизированным напряжением составляла 2,3 — 2,8 В. Это означает, что при номинальном, напряжении бортовой сети 12 В, с помощью рассматриваемого стабилизатора можно получить стабилизированное напряжение не выше 8,0 — 8,5 В. Поэтому данный стабилизатор предпочтительнее использовать в автомобилях с номинальным напряжением бортовой сети 24 В. Следует, однако, иметь в виду, что в этом случае максимальное напряжение бортовой сети составляет 30 В, в то время как напряжение источника питания микросхем серии К511 не должно превышать 25 В. Поэтому напряжение, подводимое к микросхеме от бортовой сети, необходимо ограничивать, что может быть выполнено, например, с помощью простейшего параметрического стабилизатора напряжения.
Если в состав электронной схемы, которая должна получать питание от стабилизатора напряжения, входит логическая микросхема серий К511 или другой серии высокопороговой логики, и в этой микросхеме имеется один неиспользованный элемент типа И — НЕ, то его можно использовать для создания стабилизатора напряжения рассматриваемого типа. В этом случае для создания стабилизатора напряжения потребуется минимальное количество комплектующих изделий, что увеличивает целесообразность его применения.
ЧАСТОТНО-АНАЛОГОВЫЕ ПРЕОБРАЗОВАТЕЛИ
Преобразователи частота — напряжение (ПЧН) или частотно-аналоговые преобразователи являются наиболее распространенным типовым функциональным узлом электронных систем управления агрегатами автомобиля.
Такие преобразователи применяют в системах автоматического управления сцеплением, устройствах автоматического управления переключением передач, антиблокировочных системах управления тормозными механизмами автомобилей. Их также используют во многих других системах управления агрегатами двигателя.
Основными показателями, определяющими свойства ПЧН, являются:
рабочий диапазон частот входного сигнала, характеризуемый отношением fmax/fmin;
минимальный уровень входного сигнала, при котором обеспечивается работоспособность преобразователя;
линейность преобразования;
быстродействие преобразования, которое оценивают запаздыванием изменения уровня выходного сигнала по отношению к изменению частоты входного сигнала;
величина пульсаций выходного напряжения UВЫХ (при различных частотах входного сигнала);
стабильность характеристики Uвых=F(f) при изменении напряжения питания, температуры окружающей среды и т. д.;
помехоустойчивость, т. е. отсутствие сбоев в работе при наличии помех в цепях питания и полевых (электромагнитных) помех;
коэффициент использования напряжения источника питания, характеризуемый отношением максимального напряжения на выходе ПЧН к напряжению источника питания.
Кроме того, важным показателем ПЧН, в ряде случаев определяющим целесообразность его применения, является состав и количество входящих в него комплектующих изделий, поскольку от этого зависит стоимость преобразователя. В зависимости от области применения ПЧН наиболее существенными являются те или иные его показатели.
ПЧН с формирователем сигнала
переменной скважности и фильтром
Форма сигнала u0, поступающего на вход ПЧН от датчика частоты вращения контролируемого вала, может быть самой различной (рис. 9,а и б). Сигнал u0 поступает на вход усилителя-ограничителя, который преобразует его в выходной сигнал и1. С помощью формирователя сигнала переменной скважности сигнал и1
преобразуется в последовательность прямоугольных импульсов с постоянной продолжительностью tи и амплитудой uz независимо от частоты f следования сигналов и1. При этом чем выше частота следования сигналов и1 и и2 и соответственно чем меньше продолжительность цикла tц, тем меньше скважность g = tn/tn сигналов и2 на выходе формирователя.
После прохождения последовательности импульсов w2 через фильтр низких частот они преобразуются в зависимости u3=F(t). При этом среднее напряжение U3 CP тем больше, чем выше частота входного сигнала, подводимого к ПЧН. Пульсации напряжения и3
при прочих равных условиях оказываются тем меньше, чем больше отношение постоянной времени т фильтра к периоду tц. Поэтому по мере увеличения частоты входного сигнала и, следовательно, уменьшения tц уровень пульсаций напряжения и3
снижается.
Выходной усилитель предназначен для увеличения допустимого тока нагрузки ПЧН. Обычно в качестве такого усилителя исполь-1 зуется эмиттерный повторитель.
Преимуществами ПЧН рассматриваемого типа являются линейность зависимости его выходного напряжения от частоты входного сигнала, а также возможность реализации ПЧН при использовании относительно простых схемотехнических решений. Необходимо, однако, иметь в виду, что для обеспечения приемлемого (низкого) уровня пульсаций выходного напряжения в ПЧН необходимо применять фильтр с постоянной времени, величина которой должна на один — два порядка превышать продолжительность Цикла входного сигнала. Поскольку запаздывание изменения выходного напряжения ПЧН по отношению к изменению частоты входного сигнала определяется постоянной времени фильтра, применение ПЧН описываемого типа, как правило, возможно при частотах входного сигнала не ниже сотен герц. Если же частота входного сигнала не превышает десятков герц, то запаздывание изменения выходного сигнала увеличится до сотен миллисекунд и Даже единиц секунд, что в ряде случаев недопустимо.
Рис. 9. Формы сигналов ПЧН на базе формирователя выходного сигнала переменной скважности и фильтра низких частот: о и б — соответственно при низких и высоких частотах вращения контролируемого вала
Рис. 10. Схема одновибратора на базе логических элементов 2И — НЕ и формы сигналов
Основным элементом ПЧН рассматриваемого типа является формирователь сигнала переменной скважности, в качестве. которого обычно используют либо одновибратор (ждущий мультивибратор), либо дифференциатор сигналов, поступающих с выхода усилителя-ограничителя, в сочетании с интегратором, который при этом выполняет и функции фильтра.
ПЧН с одновибратором. Известно большое число самых различных схем одновибраторов, выполненных как с дискретными элементами, так и на базе аналоговых и цифровых интегральных микросхем [9, 10, 35]. Одной из наиболее простых является приведенная на рис. 10 схема одновибратора, выполненная на базе двух логических элементов типа 2И — НЕ и содержащая время-задающую дифференцирующую RC-цепь [9, 31].
Рис. 11. Изменение напряжения на времязадающем конденсаторе одновибратора:
1 — 8 — по схеме рис. 10 при различных постоянных времени цепи зарядки конденсатора; 4 — по схеме рис. 12
В исходном состоянии одновибратора к входу 1 элемента Э1 подводится напряжение и1
с уровнем, соответствующим «логической 1», а пуск схемы осуществляется при подаче на вход 1 короткого импульса с уровнем напряжения Uo, соответствующим «логическому 0» (рис. 10).
В исходном состоянии напряжение ue на выходе 6 элемента Э2, являющееся одновременно и выходным напряжением 17ВЫХ
одно-вибратора, равно уровню «логической 1». При этом и к входу 2 элемента Э1 подводится напряжение с уровнем «логической 1», чему соответствует открытое состояние транзистора VT1 данного элемента, обеспечивающее получение на его выходе 3 напряжения Us с уровнем, соответствующим состоянию «логического 0». Напряжение такого же уровня получается и на входах 4 и 5 элемента Э2, благодаря чему обеспечивается закрытие транзистора VT2. Поэтому, как указывалось выше, на выходе 6 элемента Э2 напряжение возрастает до уровня «логической 1».
Поступление в момент t1 на вход 1 элемента Э1 напряжения uо с уровнем «логического 0» приводит к увеличению напряжения uз на выходе 3 элемента Э1 до уровня «логической 1». Такой характер изменения напряжения объясняется тем, что резистор R имеет значительно меньшее сопротивление по сравнению с резистором R1, и поэтому можно считать, что падение напряжения в резисторе R при прохождении через него тока зарядки конденсатора С близко к нулю.
Напряжение с уровнем «логической 1» в момент времени t1 через разряженный конденсатор С подводится к входам 4 и 5 элемента Э2, и, поскольку оно выше порогового напряжения (Люр, при котором происходит изменение напряжения на выходе элемента Э2, данный элемент переходит в режим работы с открытым транзистором VT2. При этом уровень напряжения Uвых соответствует состоянию «логического 0». Далее под действием напряжения и3 через резистор R1 осуществляется постепенная зарядка конденсатора С, в результате чего происходит соответствующее уменьшение напряжения u4,5 на входах 4 и 5 элемента Э2.
Рис. 12. Схема одновибратора с большой продолжительностью импульса на базе логических элементов 2И — НЕ и формы сигналов
В момент времени t2 напряжение u4,5
снижается до значения Uцop. При этом происходит закрытие транзистора VT2 и напряжение на выходе одновибратора возрастает до уровня «логической 1». В результате к обоим входам элемента Э1 оказывается подведенным напряжение с уровнем «логической 1», что обеспечивает открытие транзистора VT1 и быструю разрядку через его переход коллектор — эмиттер и диод VD конденсатора С. , После окончания процесса разрядки конденсатора одновибратор устанавливается в исходное состояние. Продолжительность импульса tи = t2 — t1 на выходе одновибратора определяется постоянной времени т=R1C. Чем больше т, тем медленнее снижается напряжение На входах 4 и 5 элемента Э2 в процессе зарядки конденсатора С (рис. 11, кривые 1 — 3) и, следовательно, тем больший промежуток времени понадобится для снижения указанного напряжения до значения Unop.
В первом приближении продолжительность tи импульса одно-Вибратора можно определить по формуле tK=RlC lп(Uп/Uпор) (где Un — напряжение питания одновибратора). При расчете по этой формуле получают несколько завышенные значения tи, поскольку в ней не учитывается падение напряжения в выходной цепи логического элемента Э1 при прохождении через нее тока зарядки конденсатора С.
Стабильность tи в значительной степени зависит от постоянства напряжения Uпор при изменении различных внешних факторов, например температуры элемента Э2. В этом отношении удовлетворительные показатели имеют логические микросхемы серии К511, для которых характерно Unop=6-8 В и температурная нестабильность ипор
составляет не более 3 мВ/°С. Для микросхем серии К155 Uпор=0,84-1,2 В, а температурная нестабильность порогового напряжения примерно такая же, как и у микросхем серии К511 (3 мВ/°С). Вследствие этого нестабильность напряжения Uпор по отношению к его номинальному значению у микросхем серии К155 существенно больше, чем у микросхем серии К511. Соответственно хуже и стабильность tu при изменении температуры у одновибра-торов на базе логических схем серии К155.
В тех случаях, когда необходимо получить значение tw порядка сотен миллисекунд и даже секунд, может быть рекомендована схема одновибратора, приведенная на рис. 12 [34]. Этот одновиб-ратор выполнен на базе трех логических элементов типа 2И — НЕ, а его времязадающая цепь образована резистором R и конденсатором С. Исходное состояние одновибратора соответствует подведению к входу 2 элемента Э1 напряжения с уровнем «логической 1», а пуск схемы осуществляется при подаче на данный вход импульса с уровнем «логического 0» (рис. 12,6). В исходном состоянии уровень напряжения на выходе 9 элемента ЭЗ, являющегося также выходным напряжением одновибратора, соответствует состоянию «логической 1». При этом к обоим выводам элемента Э1 оказывается подведенным напряжение с уровнем «логической 1», вследствие чего напряжение на выходе 3 элемента Э1 снизится до уровня «логического О», а напряжение и6
на выходе 6 элемента Э2 увеличится до уровня «логической 1».
Под действием напряжения иб происходит быстрая зарядка конденсатора С, причем ток зарядки проходит через резистор R2 и переход база — эмиттер транзистора VT4. Этот транзистор остается открытым и после окончания зарядки конденсатора, поскольку его база через резистор R подключена к положительному полюсу источника питания. В результате этого напряжение на входе 8 элемента ЭЗ имеет уровень «логического О», а напряжение на выходе 9 данного элемента — уровень «логической 1».
Подача в момент времени t1 на вход 2 элемента Э1 импульса с уровнем «логического 0» приводит к появлению на выходе 3 элемента Э1 напряжения с уровнем «логической 1», а на выходе 6 элемента Э2 — «логического О». При этом через открывшийся переход коллектор — эмиттер транзистора VT2 положительный вывод конденсатора С соединяется с эмиттером транзистора VT4. Это приводит к изменению полярности напряжения UБЭ, подводимого к переходу эмиттер — база транзистора VT4, и закрытию этого транзистора. В результате через резистор R4 к входу 8 подводится напряжение с уровнем «логической 1». Так как напряжение на обоих входах элемента ЭЗ соответствует уровню «логической 1», то на выходе 9 элемента ЭЗ напряжение снижается до уровня «логического 0». Это напряжение подводится к входу 1 элемента Э1, что обеспечивает поддержание напряжения с уровнем «логической 1» на выходе 3 и напряжения с уровнем «логического 0» на выходе 6 элемента Э2 и после окончания действия импульса.
После открытия транзистора VT2 через конденсатор С проходит ток в направлении, указанном на рис. 12, а стрелками. Вследствие прохождения этого тока, направление которого противоположно направлению тока зарядки конденсатора, происходит перезарядка (разрядка) конденсатора с изменением напряжения (см. рис. 12,6). После того, как в процессе перезарядки конденсатора напряжение Uc на нем уменьшится до нуля, а затем возрастет до 0,3 — 0,5 В, произойдет открытие транзистора VT4. Вследствие этого напряжение на входе 8 элемента ЭЗ снижается до уровня «логического 0», а напряжение на выходе 9 увеличивается до уровня «логической 1».
Появление напряжения с уровнем «логической 1» на выходе 9 элемента ЭЗ и, следовательно, на входе 1 элемента Э1 в сочетании с подведением напряжения такого же уровня к входу 2 элемента Э1 обеспечивает установку одновибратора в исходное состояние. При этом поскольку транзистор VT2 будет закрыт, через резистор R2 произойдет быстрая зарядка конденсатора С, и схема окажется подготовленной к последующей работе.
Для реализуемого в одновибраторе процесса перезарядки конденсатора (вследствие подведения к нему напряжения питания обратной полярности) характерно более интенсивное снижение напряжения на конденсаторе по сравнению с режимом обычной его разрядки (см. рис. 11). Благодаря этому при Uс=±0,5 В изменение напряжения в процессе перезарядки конденсатора происходит достаточно интенсивно. Поэтому можно сделать допущение о том, что окончание импульса на выходе одновибратора соответствует перезарядке конденсатора не до уровня 0,3 — 0,5 В, а до напряжения, равного нулю. При таком допущении продолжительность импульса одновибратора
tи = — RС1n0,5=0,7RС.
Стабильность продолжительности импульса tи одновибратора, в первую очередь, определяется характеристиками конденсатора. Если требования к стабильности tи высоки, то нельзя применять в одновибраторе оксидно-полупроводниковые конденсаторы (имеющие минимальные размеры). В этом случае необходимо использовать конденсаторы иного типа, но во избежание чрезмерного увеличения размеров аппаратуры емкость конденсатора С приходится значительно ограничивать. Для получения же требуемой величины in необходимо увеличивать сопротивление резистора R. В рассматриваемом одновибраторе эта задача решается без особых затруднений путем применения транзистора VT4 с высоким коэффициентом усиления.
Это можно проиллюстрировать на примере использования в одновибраторе логических микросхем серии К511, у которых максимальная сила входного тока составляет ~0,5 мА. Такой ток Iк должен проходить в цепи коллектора транзистора VT4 и для его обеспечения сила тока в цепи базы транзистора (проходящего через резистор R)
где р — коэффициент усиления транзистора по току; k — коэффициент, учитывающий необходимость увеличения силы тока базы для гарантированного получения режима насыщения транзистора, k= 1,3-7-1,5.
Рис. 13. Схема усилителя сигналов датчика частоты вращения
Значение р для ряда типов выпускаемых транзисторов (например, КТ3102, КТ342, КТ373) составляют не менее 100 — 200. Тогда сила тока базы транзистора VT4 должна быть не менее 3,75 — 7,5 мкА. При напряжении питания одновибратора, равном 15 В, для получения такого тока потребуется применение резистора R с сопротивлением 2 — 4 МОм. Следует, однако, иметь в виду, что для обеспечения стабильной работы автомобильной электронной аппаратуры применять резисторы со столь высоким номинальным сопротивлением не рекомендуется из-за возможных нарушений ее работы под воздействием токов утечки. Поэтому верхний допустимый предел сопротивления резистора R должен составлять 500 кОм — 1 МОм. При таких номинальных сопротивлениях резистора R для получения, например, продолжительности импульса tи=100 мс в одновибраторе необходимо применять конденсатор С емкостью не более 0,15 — 0,33 мкФ.
Рис. 14. Формы сигналов усилителя датчика частоты вращения при различных амплитудах входного сигнала
При использовании в составе ПЧН описанных одновибраторов для обеспечения их нормального функционирования необходимо подавать на вход одновибратора импульсы, амплитуда которых выше порогового напряжения Uпор применяемых микросхем. Данное требование в некоторых случаях может быть обеспечено и без применения в составе ПЧН усилителя-ограничителя. В частности, это возможно в системах управления, в которых в качестве входного сигнала используется частота вращения коленчатого вала двигателя и вход ПЧН подключается к прерывателю системы зажигания, уровень напряжения на котором не ниже напряжения бортовой сети. Если же в качестве датчика частоты вращения контролируемого вала применяют устройства индукторного типа или тахогенераторы, то при низких частотах вращения вала амплитуда сигналов датчика недостаточна для нормальной работы одновибраторов. В этих случаях между выходом датчика и входом одновибратора устанавливают усилитель-ограничитель сигналов, который преобразует поступающие на его вход сигналы произвольной формы и небольшой амплитуды в последовательность прямоугольных импульсов с амплитудой, близкой к напряжению бортовой сети.
На рис. 13 приведена схема одного из возможных вариантов такого усилителя, выполненного на базе дискретных элементов. Первый каскад усилителя, состоящий из транзистора VT1, конденсатора CJ и резисторов Rl — R4, выполнен по общеизвестной схеме усилителя с емкостной связью {31]. Вторым каскадом усилителя является ключ, выполненный на транзисторе VT2. Выход первого каскада (точка В) соединяется со входом второго каскада (точка С) через разделительный конденсатор С2, благодаря чему на вход второго каскада не попадает постоянная составляющая напряжения. Характер изменения напряжения, действующего в различных элементах усилителя, показан на рис. 14, на котором использованы следующие обозначения: Un0p — пороговое напряжение открытия транзистора VT1; Uнас — напряжение насыщения транзистора VT1; UCM — напряжение на базе транзистора VT1 при отсутствии внешнего сигнала (напряжение смещения).
Усилитель, выполненный по схеме согласно рис. 13, целесообразно применять в тех случаях, когда выходной сигнал тахомет-рического преобразователя имеет амплитуды не меньше 0,5 В. В этом случае сигнал Uвых на выходе усилителя при изменении амплитуды входного сигнала Uвх в широких пределах имеет практически постоянную скважность, т. е. отношение продолжительности цикла tц к продолжительности tи
импульса постоянно (рис. 14).
Если амплитуда входного сигнала усилителя меньше 0,5 В, то скважность сигнала начинает заметно уменьшаться. Для некоторых систем управления такое непостоянство величины скважности недопустимо. В этом случае для получения на выходе усилителя последовательности импульсов постоянной скважности независимо от уровня входного сигнала (начиная с десятков милливольт) в качестве основного элемента усилителя-ограничителя применяют операционный усилитель, работающий в режиме усилителя с положительной обратной связью, компаратор (или триггер Шмидта). Такой эффект достигается в результате того, что операционный усилитель переходит из режима с минимальным выходным напряжением в режим с максимальным выходным напряжением при изменении напряжения, подводимого к его входам, всего лишь на единицы или максимум на десятки милливольт.
Рис. 15. Схемы усилителей- ограничителей для обработки входных сигналов низкого уровня датчика частоты вращения:
а — без разделения цепей постоянного и переменного токов; б — с разделительным конденсатором между входной цепью усилителя и обмоткой датчика частоты вращения
На рис. 15 приведены схемы усилителей-ограничителей, которые могут быть рекомендованы для применения при низких уровнях входного сигнала датчика частоты вращения. В этих схемах синфазным сигналом операционного усилителя является напряжение, подводимое к его входам от делителя напряжения (резисторы R1 и R2).
В схеме на рис. 15, а переменная ЭДС, индуктируемая в обмотке датчика частоты вращения, является дифференциальным сигналом для операционного усилителя. Благодаря этому даже при небольшой амплитуде ЭДС при изменении ее полярности почти скачкообразно меняется уровень напряжения на выходе операционного усилителя. В результате соединения выхода операционного усилителя с его неинвертирующим входом через резистор R4 большого сопротивления в усилителе создается небольшая положительная обратная связь, позволяющая получить еще более крутой фронт выходного напряжения.
В схеме согласно рис. 15,6 изменение полярности ЭДС, индуктируемой в обмотке датчика частоты вращения, обеспечивает периодическое изменение напряжения на инвертирующем входе усилителя. Наличие в усилителе положительной обратной связи вследствие включения между выходом и неинвертирующим входом усилителя резистора R4, обусловливает смещение кривых 1 и 2 (рис. 16) вверх от оси абсцисс на величину ДUос. В результате в усилителе формируется дифференциальный сигнал с крутым фронтом изменения в районе значений t, при которых изменяется полярность кривых 1 и 2. Вследствие этого импульсы напряжения на выходе усилителя имеют практически прямоугольную форму (кривые I" и 2").
Применение положительной обратной связи в усилителе обеспечивает не только увеличение крутизны фронта выходного сигнала, но также позволяет получить постоянную его скважность, равную 2. Следует отметить, что в тех случаях, когда амплитуда сигнала преобразователя значительно выше UCM (по крайней мере на один порядок), можно получить крутой фронт и практически постоянную скважность выходного сигнала без применения положительной обратной связи.
Схема, выполненная согласно рис. 15, а, содержит меньшее число элементов по сравнению со схемой, приведенной на рис. 15,6. Однако в схеме на рис. 15,6 обмотка преобразователя не нагружается постоянной составляющей тока, в результате чего повышается его чувствительность.
ПЧН с дифференциатором входных сигналов в сочетании с интегратором. Принципиальная электрическая схема ПЧН данного типа, получающего сигналы от датчика частоты вращения индукторного типа, приведена на рис. 17. Для преобразования синусоидального сигнала, индуктируемого в обмотке датчика частоты вращения, в последовательность прямоугольных импульсов используется усилитель УО, схема которого была описана выше (см. рис. 13). Преобразование указанной последовательности импульсов в выходной аналоговый сигнал выполняется формирователем сигнала переменной скважности ФСК (дифференциатор сигналов в сочетании с интегратором) и фильтром низких частот ФНЧ. Интегратор выполнен на базе токоразностного усилителя DA1, а фильтр низких частот содержит конденсатор С5 и резистор R10 [10]. Усиление входного сигнала осуществляется с помощью транзистора VT3, включенного по схеме эмиттерного повторителя.
Рис. 16. Формы сигналов усилителей по схемам рис. 15:
1 и 2 — входные сигналы различной амплитуды; 1' и 2' — сигналы на неинвертирующем входе, соответствующие сигналам 1 и 2, с учетом действия обратной связи; 1" и 2" — сигналы на выходе, соответствующие сигналам 1' и 2'; Г" и У — сигналы на выходе, соответствующие сигналам I и 2 без действия обратной связи
При появлении на выходе усилителя-ограничителя (коллектор транзистора VT2) импульса напряжения V (рис. 18) происходит зарядка конденсатора СЗ, причем ток его зарядки Iсззар одновременно является и током Iн, проходящим через неинвертирующий вход усилителя DA1. В процессе зарядки сила тока
Iн = (U/Rзap) exp [-t/(RзарС3)], где Rзар = R6 + R8.
Рис. 17. Схема ПЧН с дифференциатором входных сигналов в сочетании с интегратором
Рис. 18. Формы сигналов интегратора на базе токоразностного усилителя:
а и б — соответственно при низкой и высокой частотах сигналов от датчика частоты вращения
После окончания действия импульса (период tл) происходит разрядка конденсатора СЗ через диод VD2 и резистор R7. Характер изменения силы тока в процессе зарядки Iсззар и разрядки Iсзраз конденсатора СЗ показан на рис. 18. У «идеального» токоразностного усилителя сила тока Iн
должна быть равна силе тока Iи, проходящего через инвертирующий вход усилителя. В рассматриваемой схеме ток Iи формируется под действием напряжения Uвых1 на выходе усилителя DA1, которое равно напряжению UCb до которого заряжен конденсатор С4.
В период действия импульса U сила тока Iи
равна сумме сил токов, проходящих через резистор R9 и конденсатор С4, т. е.
Iи = IR9 + IC4эар. (7)
Напряжение на конденсаторе С4 в процессе его зарядки
(8)
где Uс4н — напряжение на конденсаторе С4 в момент начала его зарядки.
С учетом равенства Iн=Iи и формул (7) и (8) может быть записано соотношение
в результате дифференцирования которого получаем
Общим решением данного неоднородного дифференциального уравнения является выражение
где A — постоянная величина, которую находят исходя из начальных условий.
В момент начала зарядки конденсатора, т. е. при t = 0, UС4зар = — UC4 н. Соответственно этому начальному условию
(9)
В момент окончания действия импульса U, т. е. при t = t3ap, напряжение на конденсаторе С4 достигает своего наибольшего значения (7ОМ (в данном цикле зарядки-разрядки), которое с учетом формулы (9) определяется выражением
(10)
Е периоды между действием импульсов происходит разрядка конденсатора С4 на резистор R9, т. е. напряжение на этом конденсаторе Uс4Раз= Uсм
ехр[ — t/(R9C4)].
При установившемся режиме работы интегратора напряжение на конденсаторе С4 в конце его разрядки (t = tf3i3) равно напряжению на данном конденсаторе в начале зарядки. Исходя из этого UС4 н = Uсм ехр[ — tраз/(R9C4)]. В результате преобразования этого
выражения с учетом формулы (10) получаем
где tц — продолжительность цикла работы интегратора, tц= tзар+tраз; Uc4cp — среднее напряжение на конденсаторе С4.
Для обеспечения небольшого уровня пульсаций выходного напряжения UBЫX должно быть выдержано условие tЦ<R9С4 и, следовательно, tpa3<R9d. В этом случае без внесения значительных погрешностей в результаты расчетов экспоненциальные функции могут быть заменены следующими зависимостями:
Зарядку конденсатора С4 можно считать практически закончившейся, когда сила тока Iн = Iи
снижается до 5 % ее максимального значения. Такое уменьшение силы тока Iн происходит за период времени t3up = 3RзарС3. Очевидно, что t3&p должно быть меньше продолжительности цикла tц. В противном случае будет отсутствовать разрядка конденсатора С4. С учетом этого
Uсм = kf и UС4ср = UСм,
где f — частота входного сигнала, f=1/tц;
Коэффициент k представляет собой постоянную величину, которая зависит только от напряжения V импульсов, подводимых к дифференцирующей цепи интегратора, и сопротивления его резисторов и конденсаторов. Соответственно этому напряжение Uвых1
на выходе интегратора, равное напряжению UС4ср, пропорционально частоте f входных сигналов (см. рис. 18).
Принцип действия рассматриваемого ПЧН основан на периодически повторяющихся периодах зарядки и разрядки конденсатора С4, поэтому на выходе усилителя DA1 неизбежно наличие пульсаций напряжения UBЫХ 1. Абсолютная величина этих пульсаций не зависит от частоты входного сигнала, но по отношению к UС4ср она тем больше, чем ниже эта частота.
Рис. 19. Структурная схема ПЧН с преобразованием входного сигнала в течение цикла
Для уменьшения уровня пульсаций на выходе ПЧН применяют дополнительный фильтр низких частот, состоящий из резистора R16 и конденсатора С5. Для получения в рассматриваемом ПЧН приемлемого (низкого) уровня пульсаций выходного напряжения Uвых2 (см. рис. 17) в нем приходится применять времязадающие RC-цепи с постоянными времени на один — два порядка выше продолжительности цикла входных импульсов. Вследствие этого данный ПЧН имеет невысокое быстродействие, и во избежание недопустимого запаздывания изменения его выходного сигнала по отношению к входному сигналу он в ряде случаев может быть применен при частотах входного сигнала не ниже сотен герц. Если же частоты входного сигнала составляют порядка десятков герц и допустимым является низкий уровень пульсаций, то ПЧН следует выполнять по какой-либо из схем, рассматриваемых ниже.
ПЧН с управляемыми интеграторами входных сигналов
В ПЧН данного типа с помощью управляемого интегратора происходит преобразование периода (или полупериода) входного сигнала в напряжение постоянного тока в следующем порядке:
1) от переднего или заднего фронта импульса входного сигнала подается команда на возврат интегратора в исходное состояние. При этом происходит быстрая разрядка ранее заряженного конденсатора интегратора с уменьшением на нем напряжения до нуля или другого заданного уровня;
2) после возврата интегратора в исходное состояние начинается зарядка его конденсатора, которая длится в течение периода действия импульса входного сигнала или в продолжение всего цикла входного сигнала;
3) в конце зарядки конденсатора интегратора уровень напряжения на нем запоминается, после чего процесс преобразования повторяется вновь.
Рис. 20. Изменение формы сигналов в ПЧН с преобразованием входного сигнала в течение цикла
Рассмотрим схемы ПЧН двух типов, в которых используется указанный принцип преобразования. Они отличаются тем, что в первом из них осуществляется зарядка одного интегрирующего конденсатора в течение всего цикла работы, а во втором применены два интегрирующих конденсатора, поочередно заряжаемые в течение действия входного импульса и паузы между импульсами.
ПЧН с преобразованием входного сигнала в течение цикла. Действие данного ПЧН, структурная схема которого приведена на рис. 19, основано на том, что в течение всего цикла действия входного сигнала конденсатор Си интегратора заряжается, а в конце цикла уровень напряжения на данном конденсаторе запоминается в результате кратковременного его соединения с конденсатором Сзэ
запоминающего элемента. После этого происходит быстрая разрядка конденсатора интегратора, и цикл работы повторяется (А. с. 790280, СССР, МКИ3 Н 03 К 9/06).
Рассмотрим действие ПЧН с момента появления импульса входного сигнала Uвх (рис. 20, точка А). От переднего фронта этого сигнала подается команда на формирование короткого импульса Uраз зэ, который управляет ключом быстрой разрядки конденсатора запоминающего элемента. При этом (за часть периода tраз зэ) напряжение UСзэ
на данном конденсаторе быстро уменьшается до нуля. После окончания действия импульса Uраззэ от его заднего фронта подается команда на формирование короткого импульса Uзарзэ. вследствие чего обеспечивается связь между конденсатором Си интегратора и конденсатором Сзэ запоминающего элемента. Благодаря этому в течение части периода tзарзэ от конденсатора Си осуществляется зарядка конденсатора Сзэ, напряжение UC39 на котором возрастает от нуля до значения равного напряжению UCVL на конденсаторе интегратора (в данный период времени). - v v
После окончания действия импульса UзарЗЭ от его заднего фронта подается команда на формирование короткого импульса Uраз
и, который обеспечивает включение ключа, осуществляющего быструю разрядку конденсатора интегратора (см. рис. 20) После окончания действия импульса UразИ
происходит выключение ключа разрядки конденсатора интегратора, что обеспечивает его последующую зарядку. Далее весь цикл работы ПЧН повторяется
Характер изменения напряжения Uсзэ, до которого заряжается конденсатор запоминающего элемента, аналогичен изменению выходного напряжения ПЧН. В свою очередь, величина и с зэ зависит от напряжения UCH, до которого зарядился конденсатор интегратора к моменту появления импульса Uзар зэ
Чем выше частота f входных импульсов, тем меньше продолжительность цикла tц и, следовательно, короче период, в течение которого заряжается конденсатор интегратора. По мере повышения частоты входных сигналов уменьшается значение иси и снижается напряжение Uc зэ. Вследствие этого обеспечивается зависимость напряжения на выходе ПЧН от частоты входных сигналов
Рис. 21. Схема ПЧН с преобразованием входного сигнала в течение цикла
Следует отметить, что у ПЧН, действующего по рассмотренному принципу, напряжение UВЫХ на выходе уменьшается по мере повышения частоты входного сигнала. Если такой характер зависимости Uвых=F(f) неприемлем, т. е. необходимо обеспечить увеличение выходного напряжения ПЧН с повышением частоты входного сигнала, то схема ПЧН должна быть выполнена таким образом, чтобы его выходное напряжение было равно разности постоянного напряжения (например, напряжения источника питания) и напряжения исзэ.
Таким образом, быстродействие ПЧН, т. е. продолжительность формирования выходного напряжения в зависимости от частоты входного сигнала, равно продолжительности цикла входного сигнала. Это весьма высокий показатель быстродействия ПЧН.
Недостатком данного ПЧН является наличие провалов в кривой выходного напряжения (см. рис. 20). Эти провалы, однако, весьма короткие по продолжительности, и их легко ликвидировать либо с помощью фильтра, имеющего малую постоянную времени, либо иными способами, которые рассмотрены ниже.
Схема ПЧН, действующего в соответствии с рассмотренным принципом, изображена на рис. 21. Для обеспечения четкой работы формирователей периодов зарядки и разрядки конденсаторов интегратора С5 и запоминающего элемента С6 необходимо подавать на вход этих формирователей прямоугольные импульсы. Данное требование обеспечивается благодаря выполнению преобразователя входных сигналов в виде ключа на транзисторе VT1.
Напряжение UK1 на коллекторе транзистора VT1 (рис. 22) является входным напряжением для формирователя периода разрядки конденсатора С6 запоминающего элемента, состоящего из конденсатора С2, резисторов R5 и R6, а также транзистора VT2.
В момент появления напряжения UKI (рис. 22, точка А) через ранее разрядившийся конденсатор С2 на базу транзистора VT2 поступает ток Iв2=Iс2. Открытие при этом перехода коллектор — эмиттер транзистора VT2 обеспечивает быструю разрядку конден-тасора С6 и, как следствие, снижение до нуля выходного напряжения UВЫХ.
Рис. 22. Формы сигналов элементов ПЧН по схеме рис. 21: а и б — соответственно при низкой и высокой частотах входного сигнала
В результате прохождения тока IC2 через конденсатор С2 происходит постепенная его зарядка, вследствие чего уменьшается до нуля базовый ток транзистора VT2, и он выключается.
При появлении напряжения Uкл наряду с открытием транзистора VT2 включается и транзистор VT3, поскольку в его базу поступает ток IБЗ=IСЗ
через ранее разрядивший конденсатор СЗ. В результате этого напряжение на базе транзистора VT7 снижается, что обеспечивает его выключение с отключением от отрицательного полюса источника питания базы транзистора VT8. Тем самым подготовляется возможность последующей зарядки конденсатора Сб.
При включении транзистора VT3 через резисторы R10 и R11 происходит разрядка ранее заряженного конденсатора С4 и подготовляется включение транзистора VT4 после того, как произойдет выключение транзистора VT3. Но до тех пор, пока транзистор VT3 включен, вместе с транзистором VT4 остается закрытым и транзистор VT5, благодаря чему происходит беспрепятственная зарядка конденсатора С5 через резистор R15. При этом напряжение, подводимое к базе транзистора VT6,
UБ6 = Un-UC6, (11)
где UС5 — напряжение на конденсаторе С5; Ua — напряжение источника питания ПЧН.
Напряжение, подводимое к конденсатору С6 от эмиттера транзистора VT9 после выключения транзистора VT7,
UС6 = UБ6 + ДUЭБ6
+ ДUЭБ8 + ДUVD2 — ДUБЭ9, (12)
где ДUЭБ6, ДUЭБ8 и ДUБЭ9
— падения напряжения на переходе база — эмиттер соответственно транзисторов VT6, VT8, VT9; ДUVD2 — падение напряжения в диоде VD2.
В первом приближении можно принять, что все указанные падения напряжения имеют одинаковую величину ДU. При этом условии выражение (12) с учетом формулы (11) имеет вид
Uсб = Uп-Uс5
+ 2ДU. (13)
Напряжение на выходе ПЧН
Uвых = UС6-ДUБЭ10-ДUБЭ11, (14)
где ДUБЭ10
и ДUвэ11 — падения напряжения на переходе база-эмиттер соответственно транзисторов VT10 и VT11.
Если, как и ранее принять, что ДUБЭЮ = АUБЭП =А(У, то формулу (14) можно записать в виде
UВЫХ = Vп-Vc5. (15)
Зарядка конденсатора С6 начинается не сразу после включения транзистора VT3, а только после того, как вследствие зарядки конденсатора С2 произойдет выключение транзистора VT2, и положительный полюс конденсатора С6 будет отсоединен от отрицательного полюса источника питания. Начало этого периода на рис. 22 обозначено точкой Б, а его окончание соответствует моменту выключения транзистора VT3, т. е. при уменьшении до нуля тока IБЗ =IC3. Зарядка конденсатора С6 осуществляется через резистор R19, имеющий малое сопротивление. Благодаря этому зарядка данного конденсатора до напряжения источника зарядки, равного величине Uп — UС5+2ДU, происходит в очень короткий промежуток времени (рис. 22), который всегда короче максимально возможного периода его зарядки (до момента выключения транзистора VT3), определяемого интервалом между точками Б и В. Таким образом, гарантируется нормальное функционирование ПЧН даже при значительных разбросах параметров комплектующих изделий его времязадающих цепей.
Конденсатор С6 к его зарядной цепи подключается практически в конце зарядки конденсатора С5, когда он уже заряжен до максимального значения напряжения UC5max (соответствующего данной частоте входных сигналов). Для этого случая формулы (13) и (15) следует записать в виде
Uс6 = Uп — Uc5max + 2ДU; (16)
UВЫХ=Uп—Uc5max. (17)
После того, как вследствие зарядки конденсатора СЗ произой-ден выключение транзистора VT3, на его коллекторе появится напряжение Uкз высокого уровня. При этом включится транзистор VT7, вследствие чего будет прервана связь между конденсатором С6 и источником его зарядки. В то же время через ранее разрядившийся конденсатор С4 и резистор R10 в базу транзистора VT4 поступит ток, что обеспечит включение как данного транзистора, так и транзистора VT5 (вследствие замыкания цепи тока IB5
его базы). В результате этого через открытый переход коллектор — эмиттер транзистора VT5 и резистор R14 низкого сопротивления произойдет быстрая разрядка конденсатора С5 (рис. 22).
Протекание тока через конденсатор С4 приведет к постепенной его зарядке с уменьшением до нуля силы тока IБ4. Следствием этого является закрытие транзисторов VT4 и VT5, после чего начинается новый цикл зарядки конденсатора С5. Из анализа формулы (17) следует, что (7ВЫХ
возрастает по мере уменьшения напряжения Uс5mах. С повышением частоты входных сигналов напряжение Uc5max
уменьшается и, следовательно, возрастает выходное напряжение UВЫх.
Таким образом, в течение любого цикла действия входного сигнала установившееся значение напряжения на конденсаторе С6 определяется напряжением Uc5max, до которого конденсатор С5 зарядился в конце предшествовавшего цикла. С учетом этого напряжение, действующее на выходе ПЧН в течение i-гo цикла входного сигнала,
UBЫХi = Uп — UC5max(i — 1), (18)
где UC5 max(i-1) — максимальное напряжение на конденсаторе С5 в конце (i — 1)-го цикла.
Зависимость напряжения Uвых на выходе ПЧН от частоты f входных сигналов, полученная при испытаниях ПЧН, выполненного по схеме рис. 21, является нелинейной (рис. 23). Однако, как это показано штриховыми линиями на рис. 23, нелинейная характеристика ПЧН может быть с достаточной точностью представлена в виде двух отрезков с линейным изменением выходного напряжения от частоты входного сигнала в диапазонах 20 — 70 и 70 — 130 Гц. Для ряда устройств электронных систем управления агрегатами автомобилей линейность зависимости Uвых = F(f) не является обязательным требованием к характеристике ПЧН.
Выходное напряжение ПЧН по схеме рис. 21 является функцией напряжения, до которого заряжается конденсатор С5, При этом несмотря на то, что связь между конденсатором С5 и выходом ПЧН осуществляется через несколько полупроводниковых приборов, в выражении (18) отсутствуют составляющие, зависящие от характеристик этих полупроводниковых приборов. Данная особенность схемы является существенным ее преимуществом, поскольку обеспечивается высокая температурная стабильность характеристики Usblx
= F(f) ПЧН, несмотря на значительное влияние температуры на параметры полупроводниковых приборов. Такой результат получен вследствие того, что связь между конденсатором С5 и выходом ПЧН образована с помощью эмиттерных повторителей, выполненных на базе транзисторов типа р-n-р (VT6, VT8) и типа n-р-n (VT9, VT10, VT11). При этом падения напряжения в переходах база — эмиттер транзисторов типов р--n-р и n-р-n имеют обратные знаки, что обеспечивает их взаимную компенсацию, независимо от температуры окружающей среды. В рассматриваемой схеме вместо одного эмит-терного повторителя на базе транзистора типа р = n = р используется диод VD2, падение напряжения в котором компенсирует падение напряжения в одном из эмиттерных повторителей на базе транзисторов типа n-р-n.
Рис. 23. Зависимость напряже ния на выходе ПЧН по схеме рис. 21 от частоты входного сигнала
Рис. 24. Схема ПЧН с преобразованием входного сигнала в течение цикла, содержащего управляемый фильтр низких частот
У ПЧН, выполненного по схеме рис. 21, имеются провалы напряжения на конденсаторе С6 в периоды его зарядки и разрядки (см. рис. 22). Такие же провалы напряжения передаются от конденсатора С6 на выход ПЧН через транзисторы VT10 и VT11. Этот недостаток устранен в ПЧН, выполненном по схеме рис. 24, которая отличается от рассмотренной выше схемы наличием дополнительного управляемого фильтра низких частот ФНЧ, состоящего из резистора R20 и конденсатора С7.
Источником зарядки конденсатора С7 является конденсатор С6, поэтому напряжение, до которого заряжается конденсатор С7, определяется следующим выражением, в котором для упрощения принято, что падение напряжения в переходе база — эмиттер всех транзисторов является одинаковым и составляет ДU:
UC7 = UC6
— ДUБЭ10 = Uc6 — ДU. (19)
Разрядка конденсатора С7 происходит через диод VD3 при включении транзистора VT4,
Особенность подключения фильтра низких частот заключается в том, что периоды зарядки и разрядки конденсаторов С6 и С7 смещены во времени (рис. 25). В течение промежутка времени tn, когда имеется резкое уменьшение напряжения на конденсаторе С6, конденсатор С7 продолжает оставаться заряженным, и напряжение на нем определяется выражением (19). При этом напряжение на выходе ПЧН
U'вых = UC7 — ДUБЭ12 = Uc7 — АU = UC6 — 2ДU.
Вследствие малой длительности промежутка времени tп для обеспечения постоянства напряжения на выходе ПЧН требуется конденсатор С7 небольшой емкости. К моменту окончания периода tn завершается зарядка конденсатора С6 и напряжение на выходе ПЧН
U"вых = Uсв — ДUБЭ10 — ДUБЭ11 = Uc6 — 2ДU.
Это напряжение равно напряжению U'вых, которое обеспечивалось на выходе ПЧН в период tп вследствие действия конденсатора С7.
Рис. 25. Формы сигналов элементов ПЧН по схеме рис. 24
Период tф, в течение которого заряжается и разряжается конденсатор С7, начинается лишь после окончания периода tu. Благодаря этому у ПЧН, выполненного согласно схеме рис. 24, отсутствуют провалы в выходном напряжении (см. рис. 25). Такой же эффект достигается при реализации в ПЧН принципа «следящей разрядки» конденсатора запоминающего элемента.
Суть принципа заключается в том, что разрядка или зарядка конденсатора запоминающего элемента, осуществляемая в конце каждого цикла входного сигнала, проводится до различной величины напряжения на конденсаторе в зависимости от частоты входного сигнала, действующего в течение данного цикла. При этом реализуются следующие режимы зарядки или разрядки конденсатора запоминающего элемента после окончания каждого из циклов входного сигнала:
если частота входного сигнала в текущем цикле равна его частоте в предшествовавшем цикле, то конденсатор запоминающего элемента не заряжается и не разряжается, т. е. напряжение на нем не изменяется;
при частоте входного сигнала в текущем цикле, меньшей, чем в предыдущем цикле, после окончания текущего цикла конденсатор запоминающего элемента разряжается до такого остаточного напряжения, которое должно соответствовать уровню зарядки конденсатора интегратора в текущем цикле;
если частота входного сигнала в текущем цикле больше, чем в предшествовавшем, то после окончания текущего цикла сразу же происходит зарядка конденсатора запоминающего элемента до напряжения, которое должно установиться на нем в соответствии с уровнем зарядки конденсатора интегратора в текущем цикле.
Рис. 26. Схема ПЧН с преобразованием входного сигнала в течение цикла, содержащего элемент следящей разрядки
Схема ПЧН, в котором реализован принцип следящей разрядки, приведена на рис. 26. Она отличается от схемы ПЧН по рис. 21 наличием дополнительного элемента слежения, состоящего из транзисторов VT12 и VT13, стабилитрона VD3 и резисторов R20, R22 (на рисунке этот элемент очерчен тонкой сплошной линией).
Конденсатор С6 запоминающего элемента разряжается через переход коллектор — эмиттер транзистора VT12, который открывается, когда к его базе подводится напряжение UБ12, на 0,4 — 0,5 В большее, чем напряжение U 312, подводимое к его эмиттеру.
В ПЧН, выполненном по рассматриваемой схеме, сразу же после окончания 1-го цикла входного сигнала происходит быстрая зарядка или разрядка конденсатора С6 запоминающего элемента до напряжения, определяемого напряжением, до которого к данному моменту зарядился конденсатор С5 интегратора. Далее в течение всего (i+l)-гo цикла напряжение на конденсаторе С6 остается неизменным и может быть определено по формуле
Uc6(i+l) = Uп — UC5maxi + 2ДU. (20)
С учетом структуры этой формулы напряжение на конденсаторе С6 в течение 1-го цикла
UC6t = Ua — Uc5max(i-1)
+ 2ДU. (21)
В период, предшествующий окончанию i-ro цикла, напряжение
на базе транзистора VT12
UБ12i = UC6i — 2ДU = Un — UC5max(i-1). (22)
Такое же напряжение UfB12i = UBlZi подводится к базе транзистора VT12 и к моменту окончания i-ro цикла, а напряжение, подводимое к эмиттеру транзистора VT12 в данный момент времени,
UЭ12i = Un — UC5maxi
+ 2ДU — UVD3, (23)
где UVD3 — опорное напряжение стабилитрона VD3.
С учетом формулы (20) выражение (23) может быть записано в виде
UЭ12i= Uсб(i+1) — UVD3. (24)
Рис. 27. Формы сигналов элементов ПЧН по схеме рис. 26 при уменьшении частоты входного сигнала
Для того чтобы исключить резкое снижение напряжения на выходе ПЧН, необходимо обеспечить следующие режимы его работы сразу же после окончания 1-го цикла:
при Uc6(i+1)>Uc6i конденсатор С6 должен только заряжаться, а напряжение на нем увеличиваться от UС6 i- до UC6(i+1);
при Uc6(i+1)< Uc6i конденсатор С6 должен разряжаться, и напряжение на нем снижаться от Ucei
до Uc6(i+1);
при Uc6(i+1)=Uc6i конденсатор не должен ни заряжаться, ни разряжаться.
С учетом формул (22) и (24) напряжение между базой и эмиттером транзистора VT12 к моменту окончания 1-го цикла
UБЭ12i = U'Б12i — UЭ12i =Uc6i — Uc6(i+1)
+UVD3 — 2ДU. (25)
Для реализации указанных выше режимов работы ПЧН необходимо, чтобы при UC6i=Uc6(i+1)
обеспечивалось закрытие транзистора VT12, соответственно чему значение Uвэ!2 должно составлять 0,4 — 0,5 В. Исходя из данного условия, по формуле (25) можно определить требуемую величину опорного напряжения стабилитрона VD3: Uvm= (0,44-0,5) +2ДU= 1,74-7,9 В. Наиболее близко к указанному значению напряжение стабилизации стаби-стора типа КС119А (1,9 В). Поэтому в рассматриваемой, схеме в качестве стабилитрона VD3 применен данный стабистор.
Рассмотрим работу .ПЧН в предположении, что продолжительность t-ro цикла входного сигнала tЦ2 больше продолжительности (i — 1)-го цикла tui, а продолжительность (t — 2)-го цикла, предшествовавшего циклу i — 1, такая же, как и цикла i — 1 (рис. 27). К концу (i — 2)-го цикла конденсатор С5 оказывается заряженным до напряжения U'C5, поэтому в течение (i — 1)-го цикла напряжения на конденсаторе С6 и выходе ПЧН
UC6(i-1)=U'C6= Uп—U'С5 + 2ДU и UBblK(i — l)=Un-U'C5.
После окончания (i — 1)-го цикла напряжение на конденсаторе С5 также оказывается равным величине U'С5
(рис. 27), чему соответствует напряжение на эмиттере транзистора VT12 UЭ12 = = Un—U'C5 + 2ДU — UVD3=U5
— U'C5 — 0,5. Поскольку fC3<tц1, изменение напряжения на конденсаторе С5 за время tС3 не учитывается.
Рис. 28. Формы сигналов элементов ПЧН по схеме рис. 26 при увеличении частоты входного сигнала
Напряжение между базой и эмиттером транзистора VT12 UБЭ12
=Uвых — UЭ12=0,5 В. При таком напряжении между базой и эмиттером транзистор VT12 либо вообще не откроется, либо сразу же закроется после разрядки конденсатора С6 на 0,1 — 0,2 В. Поэтому в первом приближении можно считать, что после окончания (i — 1)-го цикла и в течение всего t-ro цикла напряжение на конденсаторе Сб останется практически постоянным и равным Uc6i
= Uп — U'C5 + 2ДU.
К моменту окончания 1-го цикла (рис. 27, точка A) вследствие появления напряжения UK1 на коллекторе транзистора VT1 через конденсатор С2 и базу транзистора VT2 проходит ток IС2, а напряжение UK2 на
коллекторе VT2 снижается практически до нуля, что обеспечивает выключение транзистора VT13 с отключением от отрицательного полюса источника питания базы транзистора VT12. Тем самым создается возможность включения транзистора VT12. К этому моменту конденсатор С5 оказывается заряженным до напряжения UC5", которому соответствует напряжение на эмиттере транзистора VT12 U312 i = Uп — Uс5"+2ДU — UVD3=Un — UC5" — 0,5. Напряжение же на выходе ПЧН и, следовательно, на базе транзистора VT12 в данный момент времени UBblKi = UБ12 i=Un — U'cs. Указанным значениям UБ12 i и VЭ12i соответствует разность напряжений между базой и эмиттером транзистора UБЭ12i =UC5'-UC5' + 0,5.
Рис. 29. Схема ПЧН с преобразованием входного сигнала в течение цикла, содержащего элемент следящего разряда, выполненный на базе интегральных микросхем
Рис. 30. Элементы схемы ПЧН по схеме рис. 29
Так как продолжительность 1-го цикла выше, чем (i
— 1)-го цикла, то Uc5">Uc5. Вследствие этого транзистор VT12 открывается и начинается разрядка конденсатора Сб. Она будет продолжаться до тех пор, пока напряжение на конденсаторе С6 не снизится до значения UC6"=Uп — Uc5" + 2ДU. Из рассмотрения этого выражения следует, что величина Uс6" равна тому напряжению, которое должно установиться на конденсаторе С6 в (i+l)-M цикле в результате зарядки конденсатора С5 до напряжения UC5". Это означает, что больше никаких изменений напряжения на конденсаторе С6 в период времени tc3 не произойдет, т. е. и на выходе ПЧН будут отсутствовать провалы напряжения UВых (см. рис. 27).
Рассмотрим работу ПЧН, выполненного по схеме рис. 26, когда продолжительность 1-го цикла tц2 меньше продолжительности (i — 1)-го цикла tц1
(рис. 28). Для данного случая к моменту окончания 1-го цикла (точка А) будут справедливы ранее полученные формулы, втом числе соотношение UБЭ12i = UС5" — Uс5' + 0,5.
Рис. 31. Формы сигналов элементов ПЧН по схеме рис. 29
Так как ис5'>Uс5", то напряжение UБЭ12 i<0,5 В, что обеспечивает закрытое состояние транзистора VT12 и тем самым предотвращается разрядка конденсатора Сб. Наряду с этим в конце i-го цикла происходит уменьшение до нуля напряжения Uвзс и на коллекторе транзистора VT1 появляется напряжение UK1. Это приводит к кратковременному протеканию тока через конденсатор СЗ и базу транзистора VT3, в результате чего транзистор VT3 открывается, а транзистор VT7 закрывается и конденсатор С6 заряжается до напряжения U'c6(i+1)=Uc6"=Uп — UC5"+2ДU. Этому соответствует напряжение на выходе ПЧН UВых(i+1)=Uп — Uc5".
Из графиков, приведенных на рис. 28, видно, что и для данного случая на выходе ПЧН отсутствуют провалы напряжения.
При замене в ПЧН, выполненном по схеме рис. 26, ряда транзисторов интегральными микросхемами (DD1, DD2, DA1) значительно сокращается число комплектующих изделий. В состав интегратора такого ПЧН (рис. 29) входит конденсатор С4, заряжаемый через резистор R7, а запоминающий элемент содержит конденсатор С5, напряжение на котором определяется уровнем напряжения, до которого заряжается к концу предыдущего цикла конденсатор С4. Такая связь напряжений обеспечивается вследствие соединения между собой конденсаторов С4 и С5 через транзисторы VT1, VT2 и VT3, включенные по схеме эмит-терного повторителя. Операционный усилитель DA1, включенный по схеме повторителя напряжения, обеспечивает усиление мощности сигнала, поступающего на выход усилителя от конденсатора Со.
Элементы схемы, через которые заряжаются и разряжаются конденсаторы С4 и С5, показаны на рис. 30. Формирование периодов зарядки и разрядки этих конденсаторов выполняется с помощью одновибраторов, собранных из элементов DDL2, DD1.3 и DD2.2, DD2.3, входящие в состав интегральных микросхем DD1 и DD2 (см. рис. 29). Конденсатор С4 заряжается в периоды времени, когда напряжение на выходе элемента DD2.4 (см. рис. 30, точка Р) имеет низкий уровень. При появлении на этом выходе напряжения высокого уровня происходит быстрая разрядка конденсатора С4 через параллельно соединенные резисторы R7, R6 и диод VD5.
Особенность рассматриваемой схемы заключается в том, что команды на зарядку и разрядку конденсатора С5 подаются одновременно, когда напряжение на выходе элемента DD1.3 (точка F) имеет низкий уровень, а напряжение на выходе элемента DD1.4 (точка K) — высокий. При этом возможны следующие режимы зарядки или разрядки конденсатора.
1. Если напряжение, до которого ранее (т. е. в конце предыдущего цикла) был заряжен конденсатор С5 выше напряжения, которое подводится к базе транзистора VT3 от конденсатора С4 (через транзисторы VT1, VT2), то зарядка конденсатора С5 отсутствует, и он только разряжается через цепь, состоящую из диода VD6 и резистора R9.
Разрядка конденсатора С5 происходит до такого момента, когда снижение напряжения на нем достигает величины
UС5раз = Un — UC4 + ДUЭБ1 + ДUЭБ2 — ДUЭБЗ, (26)
где ДUэБ1 , ДUэв2 и ДUЭБЗ — падения напряжения на переходе база — эмиттер транзисторов соответственно VT1, VT2 и VT3.
Дальнейшая разрядка конденсатора С5 прекращается» и напряжение на нем поддерживается на уровне, определяемом формулой (26), в результате подключения конденсатора к его зарядной цепи (через открывающийся транзистор VT3).
Рис. 32. Зависимость напряжения ияых ПЧН (см. рис. 29) от частоты входного сигнала:
1 и 2 — напряжения питания соответственно 12 10,8 В
2. Если напряжение, до которого ранее был заряжен конденсатор С5, на 0,4 — 0,5 В ниже, чем напряжение, подводимое к базе транзистора VT3 от конденсатора С4, то данный транзистор открывается и через него конденсатор С5 заряжается до уровня, определяемого формулой (26).
Для иллюстрации работы рассматриваемого ПЧН (см. рис. 29) на рис. 31 показано изменение во времени напряжения в некоторых точках схемы при различных частотах входного сигнала. Из рисунка видно, что при данной схеме на выходе ПЧН отсутствуют «провалы» напряжения.
На рис. 32 приведены полученные при испытаниях ПЧН зависимости напряжения Uвых
на его выходе от частоты f входного сигнала (при напряжении питания 10,8 и 12 В). Зависимости USKJL
= F(f) являются нелинейными, однако в них могут быть выделены два линейных участка.
ПЧН с ускоренным (в течение полуцикла) преобразованием входного сигнала. Особенностью данного ПЧН, структурная схема которого приведена на рис. 33, является наличие двух интеграторов. У первого интегратора зарядка и разрядка интегрирующего конденсатора С1 протекают в течение действия импульсов Un входного сигнала (первый полуцикл), а в промежутке между ними (второй полуцикл) напряжение на данном конденсаторе остается неизменным (период запоминания уровня напряжения). Во втором интеграторе зарядка и разрядка интегрирующего конденсатора С2 происходят под действием инверсного входного сигнала t7BX, импульс которого появляется в периоды tп (рис. 34). Во время действия импульсов Uвх напряжение на конденсаторе С2 не меняется (запоминается).
Рис. 33. Структурная схема ПЧН с преобразованием входного сигнала в течение полуцикла
Конденсаторы интеграторов связаны с выходной цепью ПЧН через элемент типа ИЛИ, который пропускает на выход ПЧН напряжение того из конденсаторов, которое в данный момент имеет большее (или меньшее) значение.
В начале периодов t№ и tn
формируются короткие импульсы Upaзl и Uраз2
продолжительностью tраз, в течение которых происходит поочередная быстрая разрядка конденсаторов С1 и С2, после чего начинается их зарядка.
Из анализа изменения напряжения Uc1 и UС2 на конденсаторах интеграторов следует, что процесс обработки входного сигнала, характеризующийся прекращением изменения указанных напряжений, завершается в течение полуциклов входного сигнала. Следовательно, в рассматриваемом ПЧН обеспечивается более высокое быстродействие по сравнению с ПЧН по схеме рис. 26. В частности, при скважности входного сигнала, равной 2 (tи=tп), быстродействие увеличивается в 2 раза.
Данное положительное качество рассматриваемого ПЧН приобретает особое значение в случае низкочастотных входных сигналов. Следует, однако, иметь в виду, что максимальное быстродействие ПЧН можно реализовать только при условии равенства величин Uc1max и Uc2max. В противном случае будут иметь место пульсации выходного напряжения ПЧН (рис. 34), и для их сглаживания потребуется применение дополнительного ФНЧ. Это, в свою очередь, приведет к снижению быстродействия ПЧН. Такой же фильтр окажется необходимым при нестабильности скважности входного сигнала, как, например, при использовании в качестве входного сигнала импульсов прерывателя распределителя системы зажигания.
Рассмотрим работу ПЧН с преобразованием входного сигнала в течение полуцикла, используемого в системе автоматического управления сцеплением (рис. 35). В момент появления импульса входного сигнала UВх
(рис. 36, точка А) открывается транзистор VTI (см. рис. 35), в результате чего напряжение Uкi ка его коллекторе уменьшается практически до нуля. Это приводит к следующим изменениям в работе схемы. Для прохождения базового тока IБб транзистора VT6 создается цепь, в результате чего обеспечивается открытие перехода эмиттер — коллектор данного транзистора, приводящее к быстрой разрядке конденсатора С5. При прохождении тока IБ6
через конденсатор С4 он заряжается, в результате чего сила тока IБ6 снижается до нуля. При этом транзистор VT6 закрывается и создается возможность последующей зарядки конденсатора С5. Вследствие уменьшения до нуля напряжения UK1 закрываются транзисторы VT2 и VT3. Закрытие транзистора VT2 приводит к прекращению зарядки конденсатора С2, которое ранее осуществлялось через переход эмиттер — коллектор данного транзистора и резистора R7.
Рис. 34. Формы сигналов в ПЧН с преобразованием входного сигнала в течение полуцикла
Рис. 35. Схема ПЧН с преобразованием входного сигнала в течение полуцикла
В течение всего последующего периода tK действия импульса входного сигнала напряжение UC2 на конденсаторе С2 практически не изменяется (см. рис. 36). Закрытие транзистора VT3 приводит к появлению напряжения Uкз высокого уровня на его коллекторе, вследствие чего открывается транзистор VT4 и конденсатор С5 заряжается через резистор R16. Конденсатор С5 заряжается в течение почти всего периода действия импульса входного сигнала, за исключением очень короткого промежутка времени tраз. При закрытии транзистора VT3 через резисторы R12, R11 и R13 разряжается ранее зарядившийся конденсатор СЗ. В течение всего периода tи действия импульса входного сигнала напряжение UС2 на конденсаторе С2 имеет более высокий уровень по сравнению с напряжением UC5 на конденсаторе С5. Вследствие этого к базе транзистора VT8 будет подведено напряжение UБ8
= = Uц — UC2, которое ниже напряжения UB7 = Un
— UC5, подводимого к базе транзистора VT7.
Рис. 36. Формы сигналов элементов ПЧН по схеме рис. 35: а и. б — соответственно при низкой и высокой частотах входного сигнала
Транзисторы VТ7 и VT8, включенные по схеме эмиттерного повторителя, образуют схему типа ИЛИ, которая пропускает на выход входное напряжение низшего уровня. Поэтому к базе транзистора VT9, также включенного по схеме эмиттерного повторителя, будет подведено напряжение UB9 =ДUБ8 +UЭБЗ = = Un — Uс2mаx + ДUэБ8 (где ДUЭБ8 — падение напряжения в переходе эмиттер — база транзистора VT8). Этому напряжению будет соответствовать выходное напряжение ПЧН
Uвых = Uп - UС2mах + ДUЭБ8 + ДUЭБ9 — ДUЭБ1О - АUЭБ11, (27)
где ДUЭБ9, AUЭБ10 и ДUэв11 — падения напряжения на переходе эмиттер — база транзисторов соответственно VT9, VT10, VT11.
Падение напряжения на переходе база — эмиттер транзисторов VT8, VT9, VT10 и VT11 в первом приближении может быть принято одинаковым. Тогда формула (27) приобретает вид Uвых
=
После окончания действия импульса входного сигнала (см. рис. 36, а, точка Б) напряжение на базе транзистора VT1 снижается до нуля, а напряжение Uкл на его коллекторе возрастает. В результате закрытия транзистора VT1 через резисторы R4, R17 и R18 разряжается ранее заряженный конденсатор С4. Тем самым создается возможность последующего включения транзистора VT6 (в следующем пол у цикле работы схемы). Кроме того, закрытие транзистора VT1 вызывает следующие изменения в работе схемы: открываются транзисторы VT2 и VT3 и закрывается транзистор VT4. В результате открытия транзистора VT3 создается цепь для прохождения базового тока IБ5
транзистора VT5, благодаря чему открывается переход эмиттер — коллектор данного транзистора и быстро разряжается конденсатор С2. При прохождении тока IБ5 конденсатор СЗ быстро заряжается, что обусловливает закрытие транзистора VT5. Тем самым подготовляется возможность последующей зарядки конденсатора С2.
Рис. 37. Зависимость выходного на пряжения ПЧН по схеме рис. 35 от частоты входного сигнала
Кроме того, открытие транзистора VT3 приводит к закрытию транзистора VT4 и прекращению вследствие этого зарядки конденсатора С5. В результате напряжение 1)Сь на конденсаторе в течение всего периода tn (между импульсами входного напряжения) остается неизменным (см. рис. 36).
В результате открытия транзистора VT2 через его переход эмиттер — коллектор и резистор R7 заряжается конденсатор С2. Зарядка продолжается в течение всего периода tn, за исключением небольшого промежутка времени tраз. При этом напряжение UC5 на конденсаторе С5 выше напряжения UC2 на конденсаторе С2 и, следовательно, напряжение UE? на базе транзистора VT7 имеет более низкий уровень по сравнению с напряжением UBS на базе транзистора VT8. Таким образом, к базе транзистора VT9 оказывается подведенным напряжение UБЭ
= UБ7 + ДUЭБ7 = Uп
— Uc5 mах + + ДUэв7 (где ДUЭБ7 — падение напряжения в переходе эмиттер — база транзистора VT7). Этому соответствует напряжение на выходе ПЧН UВЫХ = Uп — Uc5max.
Таким образом, в течение периода tH напряжение на выходе ПЧН Uвых' = Uп — Uc2max, а в течение периода tnUBblХ" = Un — UC5max.
Выше уже отмечалось, что в реальных условиях работы ПЧН трудно обеспечить точное равенство Величин Uc2max и UС5 max.
Поэтому для сглаживания пульсаций выходного напряжения, возникающих при неравенстве
Величин Uс2mах и UС5 max, В реальной схеме ПЧН применен ФНЧ, содержащий резистор R22 и конденсатор С6 (см. рис. 35). Очевидно, что наличие такого фильтра уменьшает быстродействие ПЧН. Поэтому ПЧН, выполненный по рассматриваемой схеме, в случае непостоянства скважности входного сигнала практически не имеет преимуществ в быстродействии по сравнению с ПЧН по схемам, приведенным на рис. 21, 24, 26 и 29.
Путем соответствующего выбора сопротивления резисторов и конденсаторов времязадающих цепей (R7, R16, С2 и С5) в ПЧН по схеме рис. 35 можно получить зависимость UBЫХ = F(f) (где f — частота входного сигнала) при Uи=10 В (рис. 37), приближающуюся к линейной. При этом, однако, сужается диапазон изменения напряжения на выходе ПЧН, который в линейной зоне составляет всего лишь около 40 % напряжения источника питания. Диапазон изменения Uвых может быть увеличен, но только за счет ухудшения линейности характеристики UBЫХ — F(f)t т. е. рассматриваемая схема не имеет преимуществ по сравнению со схемами на рис. 21, 24, 26 и 29. Так, из сопоставления зависимостей (А,ых = =F(f), приведенных на рис. 23, 32 и 37, видно, что для всех сравниваемых схем уменьшение диапазона изменения напряжения Uвых
позволяет улучшить линейность характеристики ПЧН.
С учетом особенностей рассмотренных выше ПЧН различного типа могут быть даны следующие рекомендации по их выбору:
при высокой частоте входных сигналов (выше сотен герц) и отсутствии особых требований к быстродействию преобразования предпочтительным является применение ПЧН с формирователем выходных сигналов переменной скважности в сочетании с ФНЧ;
при частотах входных сигналов порядка единиц и десятков герц и необходимости высокого быстродействия преобразования и сведения к минимуму пульсации выходного напряжения ПЧН следует применять схему с управляемым интегратором входных сиг-Налов;
схема ПЧН с преобразованием входного сигнала в течение полуцикла является предпочтительной, если скважность входного сигнала изменяется в небольших пределах. В этом случае дополнительный фильтр ПЧН может иметь небольшую постоянную времени, что обеспечит максимальное быстродействие преобразования входного сигнала.
РЕГУЛЯТОРЫ СИЛЫ ТОКА
В автомобильной электронной аппаратуре часто возникает необходимость автоматического регулирования силы тока в цепи нагрузки по заданному закону в зависимости от тех или иных управляющих сигналов. Частным случаем такого регулирования является поддержание постоянства заданной силы тока в цепи при возможных изменениях напряжения питания, сопротивления нагрузки, температуры окружающей среды и других факторов.
Способы решения задач регулирования существенно отличаются в зависимости от того, в какой цепи необходимо обеспечить регулирование (или поддержание постоянства) силы тока. Наиболее просто решается эта задача в цепях малой мощности, где регулирующие элементы работают с небольшой рассеиваемой мощностью. Значительно сложнее обеспечить нормальную работу системы регулирования при токах нагрузки, превышающих 1 — 2 А, особенно если необходимо иметь значительный диапазон регулирования силы тока.
Ниже рассматриваются электронные системы, которые могут быть рекомендованы для автоматического регулирования силы тока в цепях с мощностью нагрузки от единицы до десятков ватт.
Системы непрерывного регулирования силы тока
В некоторых системах управления автомобильными агрегатами для автоматического регулирования давления жидкости или количества топлива, подаваемого в двигатель, используют клапаны или золотники с электромагнитным приводом. При таком способе управления для обеспечения стабильности регулировочной характеристики необходимо сохранять постоянство заданной силы тока в обмотке электромагнита независимо от таких факторов, как напряжение в бортовой сети автомобиля и температура окружающей среды, влияющая на сопротивление обмотки электромагнита.
Как правило, в указанных системах управления используют сравнительно маломощные электромагниты с максимальной силой тока нагрузки, не превышающей 1 А (при номинальном напряжении бортовой сети 12 В). Для управления такими электромагнитами может быть рекомендована система автоматического поддержания силы тока с так называемым режимом непрерывного регулирования. При таком режиме практически отсутствуют пульсации силы тока в цепи нагрузки, но в силовом регулирующем элементе (выходном транзисторе) рассеивается значительная мощность
Р = (Uп—IнRн) Iн, (28)
где Iн — сила заданного тока нагрузки; RH
— сопротивление нагрузки (обмотки электромагнита).
В качестве примера подобных систем регулирования на рис.38 приведена схема регулятора, обеспечивающего поддержание заданной силы тока в обмотке электромагнита, предназначенного для регулирования давления жидкости в напорной магистрали гидромеханической передачи. По принципу действия электронный блок напоминает компенсационный стабилизатор напряжения. Измерительным элементом блока является резистор R6, через который проходит ток нагрузки Iэм электромагнита. В качестве управляющего элемента блока используется транзистор VT1, а регулирование (поддержание постоянства) силы тока Iэм
осуществляется с помощью регулирующего транзистора VT2, работающего в активном режиме.
Применение стабилитрона VD1 обеспечивает постоянство напряжения UB1, подводимого к базе транзистора VT1, независимо от напряжения Un
бортовой сети. Напряжение Uэ1, подводимое к эмиттеру транзистора VT1, определяется падением напряжения в измерительном резисторе R6 при прохождении через него тока Iэм. Сила тока IБ1, проходящего через базу транзистора VT1, определяется разностью напряжений UB1
и Uэ1. Чем больше эта разность, тем выше сила тока IБ1, следствием чего является увеличение силы тока IK1 коллектора транзистора VT1, а также силы тока базы IБ2 и коллектора IК2
транзистора VT2, определяющего величину тока Iэм.
Рис. 38. Схема регулятора силы тока с непрерывным регулированием и зависимость тока Iэм и напряжения UCT от напряжения Un
Параметры схемы рассчитывают таким образом, чтобы при прохождении через резистор R6 тока электромагнита Iэмн
заданной силы падение напряжения в резисторе обеспечивало такую разность UB1 — Uэ1, которая необходима для получения тока IК2=Iэм н. При отклонении силы тока в обмотке электромагнита от заданного значения Iэмн, например, в сторону увеличения возрастет падение напряжения в резисторе R6 и, следовательно, уменьшится разность UБ1 — UЭI. Это приведет к снижению силы тока IБ1 и восстановлению прежней силы тока Iэмн в обмотке электроглагнита.
В случае уменьшения силы тока Iмэ, наоборот, произойдет увеличение разности UБI — Uэ1 , что обусловит восстановление заданной силы тока Iэм н. Надо отметить, что сила тока в обмотке электромагнита не зависит ни от сопротивления его обмотки, ни от напряжения источника питания, так как режим работы транзисторов VT1 и VT2 определяется исключительно падением напряжения в резисторе R6, которое является функцией толька силы тока Iэм. Данная особенность рассматриваемой схемы является важным ее преимуществом.
Если параллельно переходу эмиттер — коллектор транзистора VT2 подключить, как это показано штриховой линией на рис. 38, резистор R7, то тепловой режим транзистора VT2 существенно улучшится, так как часть тока обмотки электромагнита будет проходить через этот резистор. Сопротивление резистора R7 должно быть выбрано таким, чтобы при максимально возможном напряжении питания сила проходящего через него тока была не больше заданного значения Iэмн.
Анализ полученной при испытаниях рассматриваемой схемы зависимости силы тока Iэм в обмотке электромагнита от напряжения Un источника питания (рис. 38) показывает, что изменение силы тока Iэм в диапазоне напряжений 10,8 — 15 В составило всего лишь ±2,5% (от 0,96 до 1,01 А). При максимальном напряжении питания бортовой сети, равном 15 В, в регулирующих элементах системы рассеивается мощность, составляющая около 6 — 8 Вт в зависимости от сопротивления Rэм обмотки электромагнита, которое при изменении ее температуры колеблется в пределах 6 — 8 Ом. При отсутствии резистора R7 вся эта мощность рассеивается в транзисторе VT2, а в случае применения резистора R7 с сопротивлением, равным 6 Ом, мощность, рассеиваемая в транзисторе VT2, уменьшается примерно в 2 раза.
Приведенные цифры являются наглядной иллюстрацией неблагоприятных энергетических показателей систем непрерывного регулирования силы тока. В связи с этим системы данного типа являются менее универсальными по сравнению с системами импульсного регулирования, обладающими несравненно лучшими показателями по мощности, рассеиваемой в регулирующих элементах.
Системы импульсного регулирования силы тока
По принципу действия рассматриваемые системы подобны электронному регулятору напряжения, но контролируемым параметром в них является не регулируемое напряжение, а сила тока в цепи нагрузки. Примером такой системы регулирования является регулятор силы тока в обмотке электромагнита, входящего в состав устройства автоматического управления сцеплением автомобиля (рис.39).
Рис. 39. Схема импульсного регулятора силы тока и зависимость iэм
=f(t)
Управляющим элементом регулятора Р является операционный усилитель DA1, источником питания которого является стабилизатор напряжения СГ, поддерживающий постоянным напряжение Uст
между положительным полюсом бортовой сети ( + UCT) и шиной ( — UCT). Разность напряжений между ними составляет 10,0 — 10,2 В.
Вначале рассмотрим действие регулятора при неизменном сопротивлении переменного резистора Rу, являющегося элементом задания требуемой силы тока. При этом напряжение, подводимое к инвертирующему входу 4 операционного усилителя, зависит от того, открыт или закрыт транзистор VTL Если данный транзистор открыт, то резистор R1 нагружается дополнительным током, проходящим через резистор R9*, вследствие чего к входу 4 усилителя подводится более низкое напряжение U40тк по сравнению с напряжением U4зак, подводимым к входу 4 при закрытом транзисторе VT1.
Сопротивление резистора R9* выбирают таким, чтобы разность U4зак — U4отк = ДU4 была больше напряжения дифференциального сигнала, требуемого для перевода операционного усилителя из режима с низким уровнем выходного напряжения в режим с высоким (максимальным) уровнем выходного напряжения.
К неинвертирующему входу 5 операционного усилителя подводится напряжение
U5 = (Ucт -IЭМR15) R4/(Rэ + R4). (29)
Если разность напряжений U5 — U4
превышает величину ДUА, то напряжение на выходе 10 усилителя имеет высокий уровень (8,5 В). При U4>U5 напряжение на выходе усилителя имеет низкий уровень (1,5 В).
В первый момент после подключения схемы к источнику питания вследствие большой индуктивности обмотки электромагнита сила тока Iэм
=0 независимо от того, открыт или закрыт транзистор. Падение напряжения в резисторе R16 будет отсутствовать, благодаря чему напряжение U5 окажется значительно выше напряжения U4. Следствием этого явится появление на выходе 10 усилителя напряжения высокого уровня, что обеспечит открытие транзисторов VT2, VT3 и VT4 выходного усилителя ВУ с подключением обмотки электромагнита к источнику питания. Кроме того, откроется транзистор VT1, и на входе 4 усилителя установится напряжение U4 0тк низкого уровня.
При подключении обмотки электромагнита к источнику питания постепенно увеличится в ней сила тока, который, проходя через резистор R16, обусловит в нем падение напряжения ДU)в= = Iэм R16. Из этой формулы следует, что по мере увеличения силы тока Iэм происходит уменьшение напряжения U5, подводимого к неинвертирующему входу 5 усилителя. Когда вследствие увеличения силы тока Iэм до значения IЭм mах это напряжение уменьшится настолько, что разность U5 — U4 отк
окажется меньше ДU4, напряжение на выходе 10 усилителя начнет снижаться, и одновременно будет постепенно закрываться транзистор VT1. Это вызовет повышение напряжения на входе 4 усилителя.
Такое повышение напряжения U4 приведет к дальнейшему уменьшению разности U5 — U4, вследствие чего усилитель начнет работать в режиме с низким уровнем выходного напряжения. Напряжение на входе 4 при этом равно значению U4зак.
Вследствие уменьшения до низкого уровня напряжения на выходе усилителя выключаются транзисторы VT2, VT3 и VT4, в результате чего обмотка электромагнита отключается от источника питания (бортовой сети). Однако сила тока Iэмзак
(см. рис. 39) при этом не падает до нуля, а постепенно уменьшается, поскольку данный ток поддерживается за счет ЭДС самоиндукции обмотки электромагнита, и его цепь замыкается через диод VDL
По мере уменьшения силы тока Iэм возрастает напряжение U5 и, когда оно при силе тока Iэм=Iэм min превысит напряжение U4зак, усилитель начнет работать в режиме с высоким уровнем выходного напряжения. Вследствие открытия при этом транзистора VT1 и снижения напряжения на входе 4 усилителя до значения U40Тк данный переход происходит лавинообразно и на выходе усилителя сразу же устанавливается напряжение высокого уровня. Далее процесс будет неоднократно повторяться, а сила тока в цепи электромагнита будет меняться от Iэм min до Iэм max (см. рис. 39).
Важной особенностью рассматриваемой схемы является использование для управления операционным усилителем эффекта положительной обратной связи, реализуемой с помощью транзистора VT1. В результате действия этой положительной обратной связи при любой комбинации напряжений на входах 4 и 5 усилителя на его выходе устанавливается либо минимальное (1,5 В), либо максимальное (8,5 В) напряжение. Тем самым гарантируется режим работы транзисторов VT2, VT3 и VT4 либо в режиме отсечки, либо в режиме насыщения. Как в том, так и другом случае рассеиваемая мощность в данных транзисторах минимальна. Частота изменения силы тока Iэм зависит от глубины указанной положительной обратной связи, которая определяется сопротивлением резистора R9*.
При электромагнитной постоянной времени обмотки электромагнита, равной 100 — 120 мс, изменением сопротивления резистора R9* обеспечивается регулирование частоты изменения силы тока Iэм
в пределах 10 — 1000 Гц. Сила тока IЭм не зависит ни от напряжения источника питания, ни от сопротивления обмотки электромагнита, поскольку входным сигналом для системы регулирования является только падение напряжения в резисторе R16, которое при постоянстве сопротивления данного резистора является функцией силы тока Iэм. Благодаря этому данная схема обеспечивает высокую стабильность среднего значения тока Iэмср в цепи нагрузки при значительных колебаниях таких внешних факторов, как напряжение бортовой сети автомобиля и температура окружающей среды.
Наряду с поддержанием в цепи нагрузки постоянной заданной силы тока рассматриваемая схема позволяет обеспечить и ее изменение по заданному закону в зависимости от уровня управляющих сигналов, подводимых к входу А схемы. Это, в частности, может быть реализовано путем изменения сопротивления резистора Rу
или подведения к входу А напряжения от источника управляющего сигнала.
В любом случае требуется только обеспечить изменение по заданному закону напряжения, подводимого к входу А схемы и, следовательно, к входу 4 операционного усилителя. Изменение данного напряжения обусловит переход усилителя от режима с низким уровнем выходного напряжения в режим с высоким его уровнем и обратно при других значениях напряжения U5 на выходе 5 усилителя.
Из формулы (29) следует, что напряжение U5 определяет силу тока в обмотке электромагнита, т. е. значения Iэмmin, IЭм max и Iэмср
будут меняться в зависимости от величины Ub.
Описываемая схема теоретически не имеет ограничений в отношении мощности нагрузки, если требуется поддержание заданной силы тока или его регулирование. Практически, однако, использовать данную схему при силе тока выше 10 — 15 А затруднительно из-за необходимости применения радиаторов больших размеров, способных рассеивать мощность 10 — 20 Вт, выделяемую в цепи регулирующих (выходных) транзисторов.